Description: Obsolete version of ssct as of 7-Dec-2024. (Contributed by Thierry Arnoux, 31-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssctOLD | |- ( ( A C_ B /\ B ~<_ _om ) -> A ~<_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex | |- ( B ~<_ _om -> B e. _V ) |
|
| 2 | ssdomg | |- ( B e. _V -> ( A C_ B -> A ~<_ B ) ) |
|
| 3 | 1 2 | syl | |- ( B ~<_ _om -> ( A C_ B -> A ~<_ B ) ) |
| 4 | 3 | impcom | |- ( ( A C_ B /\ B ~<_ _om ) -> A ~<_ B ) |
| 5 | domtr | |- ( ( A ~<_ B /\ B ~<_ _om ) -> A ~<_ _om ) |
|
| 6 | 4 5 | sylancom | |- ( ( A C_ B /\ B ~<_ _om ) -> A ~<_ _om ) |