Metamath Proof Explorer


Theorem ssfin2

Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion ssfin2 ( ( 𝐴 ∈ FinII𝐵𝐴 ) → 𝐵 ∈ FinII )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝐴 ∈ FinII𝐵𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝐴 ∈ FinII )
2 elpwi ( 𝑥 ∈ 𝒫 𝒫 𝐵𝑥 ⊆ 𝒫 𝐵 )
3 2 adantl ( ( ( 𝐴 ∈ FinII𝐵𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝑥 ⊆ 𝒫 𝐵 )
4 simplr ( ( ( 𝐴 ∈ FinII𝐵𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝐵𝐴 )
5 sspwb ( 𝐵𝐴 ↔ 𝒫 𝐵 ⊆ 𝒫 𝐴 )
6 4 5 sylib ( ( ( 𝐴 ∈ FinII𝐵𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝒫 𝐵 ⊆ 𝒫 𝐴 )
7 3 6 sstrd ( ( ( 𝐴 ∈ FinII𝐵𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → 𝑥 ⊆ 𝒫 𝐴 )
8 fin2i ( ( ( 𝐴 ∈ FinII𝑥 ⊆ 𝒫 𝐴 ) ∧ ( 𝑥 ≠ ∅ ∧ [] Or 𝑥 ) ) → 𝑥𝑥 )
9 8 ex ( ( 𝐴 ∈ FinII𝑥 ⊆ 𝒫 𝐴 ) → ( ( 𝑥 ≠ ∅ ∧ [] Or 𝑥 ) → 𝑥𝑥 ) )
10 1 7 9 syl2anc ( ( ( 𝐴 ∈ FinII𝐵𝐴 ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → ( ( 𝑥 ≠ ∅ ∧ [] Or 𝑥 ) → 𝑥𝑥 ) )
11 10 ralrimiva ( ( 𝐴 ∈ FinII𝐵𝐴 ) → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [] Or 𝑥 ) → 𝑥𝑥 ) )
12 ssexg ( ( 𝐵𝐴𝐴 ∈ FinII ) → 𝐵 ∈ V )
13 12 ancoms ( ( 𝐴 ∈ FinII𝐵𝐴 ) → 𝐵 ∈ V )
14 isfin2 ( 𝐵 ∈ V → ( 𝐵 ∈ FinII ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [] Or 𝑥 ) → 𝑥𝑥 ) ) )
15 13 14 syl ( ( 𝐴 ∈ FinII𝐵𝐴 ) → ( 𝐵 ∈ FinII ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [] Or 𝑥 ) → 𝑥𝑥 ) ) )
16 11 15 mpbird ( ( 𝐴 ∈ FinII𝐵𝐴 ) → 𝐵 ∈ FinII )