| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssprss | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( { 𝐴 ,  𝐵 }  ⊆  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∨  𝐴  =  𝐷 )  ∧  ( 𝐵  =  𝐶  ∨  𝐵  =  𝐷 ) ) ) ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  ⊆  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∨  𝐴  =  𝐷 )  ∧  ( 𝐵  =  𝐶  ∨  𝐵  =  𝐷 ) ) ) ) | 
						
							| 3 |  | eqneqall | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ≠  𝐵  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 4 |  | eqtr3 | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 )  →  𝐴  =  𝐵 ) | 
						
							| 5 | 3 4 | syl11 | ⊢ ( 𝐴  ≠  𝐵  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 7 | 6 | com12 | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐶 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 8 |  | preq12 | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  { 𝐴 ,  𝐵 }  =  { 𝐷 ,  𝐶 } ) | 
						
							| 9 |  | prcom | ⊢ { 𝐷 ,  𝐶 }  =  { 𝐶 ,  𝐷 } | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) | 
						
							| 11 | 10 | a1d | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 12 |  | preq12 | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) | 
						
							| 13 | 12 | a1d | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 14 |  | eqtr3 | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐷 )  →  𝐴  =  𝐵 ) | 
						
							| 15 | 3 14 | syl11 | ⊢ ( 𝐴  ≠  𝐵  →  ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐷 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐷 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 17 | 16 | com12 | ⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐷 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 18 | 7 11 13 17 | ccase | ⊢ ( ( ( 𝐴  =  𝐶  ∨  𝐴  =  𝐷 )  ∧  ( 𝐵  =  𝐶  ∨  𝐵  =  𝐷 ) )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 19 | 18 | com12 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( ( ( 𝐴  =  𝐶  ∨  𝐴  =  𝐷 )  ∧  ( 𝐵  =  𝐶  ∨  𝐵  =  𝐷 ) )  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 20 | 2 19 | sylbid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  ⊆  { 𝐶 ,  𝐷 }  →  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) | 
						
							| 21 |  | eqimss | ⊢ ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  →  { 𝐴 ,  𝐵 }  ⊆  { 𝐶 ,  𝐷 } ) | 
						
							| 22 | 20 21 | impbid1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( { 𝐴 ,  𝐵 }  ⊆  { 𝐶 ,  𝐷 }  ↔  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 } ) ) |