Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
id |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵 ) |
3 |
|
id |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) |
4 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) |
5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) |
6 |
|
sstr2 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵 ) ) |
7 |
6
|
impcom |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 ⊆ 𝐵 ) |
8 |
2 5 7
|
syl2an |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴 ) → 𝑥 ⊆ 𝐵 ) |
9 |
|
elpwg |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵 ) ) |
10 |
9
|
biimpar |
⊢ ( ( 𝑥 ∈ V ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 ∈ 𝒫 𝐵 ) |
11 |
1 8 10
|
eel021old |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴 ) → 𝑥 ∈ 𝒫 𝐵 ) |
12 |
11
|
ex |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵 ) ) |
13 |
12
|
alrimiv |
⊢ ( 𝐴 ⊆ 𝐵 → ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵 ) ) |
14 |
|
dfss2 |
⊢ ( 𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵 ) ) |
15 |
14
|
biimpri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵 ) → 𝒫 𝐴 ⊆ 𝒫 𝐵 ) |
16 |
13 15
|
syl |
⊢ ( 𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵 ) |
17 |
16
|
iin1 |
⊢ ( 𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵 ) |