Metamath Proof Explorer


Theorem submgmcl

Description: Submagmas are closed under the monoid operation. (Contributed by AV, 26-Feb-2020)

Ref Expression
Hypothesis submgmcl.p + = ( +g𝑀 )
Assertion submgmcl ( ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 submgmcl.p + = ( +g𝑀 )
2 submgmrcl ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝑀 ∈ Mgm )
3 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
4 3 1 issubmgm ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) )
5 2 4 syl ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) )
6 5 ibi ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) )
7 6 simprd ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 )
8 ovrspc2v ( ( ( 𝑋𝑆𝑌𝑆 ) ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )
9 7 8 sylan2 ( ( ( 𝑋𝑆𝑌𝑆 ) ∧ 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )
10 9 ancoms ( ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ∧ ( 𝑋𝑆𝑌𝑆 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )
11 10 3impb ( ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )