Metamath Proof Explorer


Theorem subsub3

Description: Law for double subtraction. (Contributed by NM, 27-Jul-2005)

Ref Expression
Assertion subsub3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵𝐶 ) ) = ( ( 𝐴 + 𝐶 ) − 𝐵 ) )

Proof

Step Hyp Ref Expression
1 subsub2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵𝐶 ) ) = ( 𝐴 + ( 𝐶𝐵 ) ) )
2 addsubass ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − 𝐵 ) = ( 𝐴 + ( 𝐶𝐵 ) ) )
3 2 3com23 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − 𝐵 ) = ( 𝐴 + ( 𝐶𝐵 ) ) )
4 1 3 eqtr4d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵𝐶 ) ) = ( ( 𝐴 + 𝐶 ) − 𝐵 ) )