Step |
Hyp |
Ref |
Expression |
1 |
|
sssucid |
⊢ 𝐴 ⊆ suc 𝐴 |
2 |
|
id |
⊢ ( Tr 𝐴 → Tr 𝐴 ) |
3 |
|
id |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) |
4 |
3
|
simpld |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ 𝑦 ) |
5 |
|
id |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) |
6 |
2 4 5
|
trelded |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
7 |
1 6
|
sselid |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ suc 𝐴 ) |
8 |
7
|
3expia |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
9 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
10 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴 ) ) |
11 |
10
|
biimpac |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝐴 ) |
12 |
4 9 11
|
syl2an |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝐴 ) |
13 |
1 12
|
sselid |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) |
14 |
13
|
ex |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
15 |
3
|
simprd |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 ) |
16 |
|
elsuci |
⊢ ( 𝑦 ∈ suc 𝐴 → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
18 |
8 14 17
|
jaoded |
⊢ ( ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → 𝑧 ∈ suc 𝐴 ) |
19 |
18
|
un2122 |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → 𝑧 ∈ suc 𝐴 ) |
20 |
19
|
ex |
⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
21 |
20
|
alrimivv |
⊢ ( Tr 𝐴 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
22 |
|
dftr2 |
⊢ ( Tr suc 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
23 |
22
|
biimpri |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) → Tr suc 𝐴 ) |
24 |
21 23
|
syl |
⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |
25 |
24
|
idiALT |
⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |