Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf is suctrALTcfVD without virtual deductions and was derived automatically from suctrALTcfVD . The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | |- (. Tr A ->. Tr A ). |
| 2:: | |- (. ......... ( z e. y /\ y e. suc A ) ->. ( z e. y /\ y e. suc A ) ). |
| 3:2: | |- (. ......... ( z e. y /\ y e. suc A ) ->. z e. y ). |
| 4:: | |- (. ................................... ....... y e. A ->. y e. A ). |
| 5:1,3,4: | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) , y e. A ). ->. z e. A ). |
| 6:: | |- A C_ suc A |
| 7:5,6: | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) , y e. A ). ->. z e. suc A ). |
| 8:7: | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) ). ->. ( y e. A -> z e. suc A ) ). |
| 9:: | |- (. ................................... ...... y = A ->. y = A ). |
| 10:3,9: | |- (. ........ (. ( z e. y /\ y e. suc A ) , y = A ). ->. z e. A ). |
| 11:10,6: | |- (. ........ (. ( z e. y /\ y e. suc A ) , y = A ). ->. z e. suc A ). |
| 12:11: | |- (. .......... ( z e. y /\ y e. suc A ) ->. ( y = A -> z e. suc A ) ). |
| 13:2: | |- (. .......... ( z e. y /\ y e. suc A ) ->. y e. suc A ). |
| 14:13: | |- (. .......... ( z e. y /\ y e. suc A ) ->. ( y e. A \/ y = A ) ). |
| 15:8,12,14: | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) ). ->. z e. suc A ). |
| 16:15: | |- (. Tr A ->. ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ). |
| 17:16: | |- (. Tr A ->. A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ). |
| 18:17: | |- (. Tr A ->. Tr suc A ). |
| qed:18: | |- ( Tr A -> Tr suc A ) |
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suctrALTcfVD | ⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid | ⊢ 𝐴 ⊆ suc 𝐴 | |
| 2 | idn1 | ⊢ ( Tr 𝐴 ▶ Tr 𝐴 ) | |
| 3 | idn1 | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) | |
| 4 | simpl | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ 𝑦 ) | |
| 5 | 3 4 | el1 | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ 𝑧 ∈ 𝑦 ) |
| 6 | idn1 | ⊢ ( 𝑦 ∈ 𝐴 ▶ 𝑦 ∈ 𝐴 ) | |
| 7 | trel | ⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) | |
| 8 | 7 | 3impib | ⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 9 | 2 5 6 8 | el123 | ⊢ ( ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) , 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ 𝐴 ) |
| 10 | ssel2 | ⊢ ( ( 𝐴 ⊆ suc 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ suc 𝐴 ) | |
| 11 | 1 9 10 | el0321old | ⊢ ( ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) , 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 ) |
| 12 | 11 | int3 | ⊢ ( ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) ▶ ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
| 13 | idn1 | ⊢ ( 𝑦 = 𝐴 ▶ 𝑦 = 𝐴 ) | |
| 14 | eleq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 15 | 14 | biimpac | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 16 | 5 13 15 | el12 | ⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) , 𝑦 = 𝐴 ) ▶ 𝑧 ∈ 𝐴 ) |
| 17 | 1 16 10 | el021old | ⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) , 𝑦 = 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 ) |
| 18 | 17 | int2 | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
| 19 | simpr | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 ) | |
| 20 | 3 19 | el1 | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ 𝑦 ∈ suc 𝐴 ) |
| 21 | elsuci | ⊢ ( 𝑦 ∈ suc 𝐴 → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) | |
| 22 | 20 21 | el1 | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
| 23 | jao | ⊢ ( ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) ) | |
| 24 | 23 | 3imp | ⊢ ( ( ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) ∧ ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) → 𝑧 ∈ suc 𝐴 ) |
| 25 | 12 18 22 24 | el2122old | ⊢ ( ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) ▶ 𝑧 ∈ suc 𝐴 ) |
| 26 | 25 | int2 | ⊢ ( Tr 𝐴 ▶ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 27 | 26 | gen12 | ⊢ ( Tr 𝐴 ▶ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 28 | dftr2 | ⊢ ( Tr suc 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) | |
| 29 | 28 | biimpri | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) → Tr suc 𝐴 ) |
| 30 | 27 29 | el1 | ⊢ ( Tr 𝐴 ▶ Tr suc 𝐴 ) |
| 31 | 30 | in1 | ⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |