| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumdchr.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 2 |
|
sumdchr.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 3 |
|
sumdchr.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 4 |
|
sumdchr.1 |
⊢ 1 = ( 1r ‘ 𝑍 ) |
| 5 |
|
sumdchr.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
| 6 |
|
sumdchr.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 |
|
sumdchr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 8 |
1 2 3 4 5 6 7
|
sumdchr2 |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = if ( 𝐴 = 1 , ( ♯ ‘ 𝐷 ) , 0 ) ) |
| 9 |
1 2
|
dchrhash |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ 𝐷 ) = ( ϕ ‘ 𝑁 ) ) |
| 10 |
6 9
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐷 ) = ( ϕ ‘ 𝑁 ) ) |
| 11 |
10
|
ifeq1d |
⊢ ( 𝜑 → if ( 𝐴 = 1 , ( ♯ ‘ 𝐷 ) , 0 ) = if ( 𝐴 = 1 , ( ϕ ‘ 𝑁 ) , 0 ) ) |
| 12 |
8 11
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = if ( 𝐴 = 1 , ( ϕ ‘ 𝑁 ) , 0 ) ) |