Step |
Hyp |
Ref |
Expression |
1 |
|
sumdchr.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
sumdchr.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
3 |
|
sumdchr2.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
sumdchr2.1 |
⊢ 1 = ( 1r ‘ 𝑍 ) |
5 |
|
sumdchr2.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
6 |
|
sumdchr2.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
sumdchr2.x |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
8 |
|
eqeq2 |
⊢ ( ( ♯ ‘ 𝐷 ) = if ( 𝐴 = 1 , ( ♯ ‘ 𝐷 ) , 0 ) → ( Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ↔ Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = if ( 𝐴 = 1 , ( ♯ ‘ 𝐷 ) , 0 ) ) ) |
9 |
|
eqeq2 |
⊢ ( 0 = if ( 𝐴 = 1 , ( ♯ ‘ 𝐷 ) , 0 ) → ( Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = 0 ↔ Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = if ( 𝐴 = 1 , ( ♯ ‘ 𝐷 ) , 0 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝐴 = 1 → ( 𝑥 ‘ 𝐴 ) = ( 𝑥 ‘ 1 ) ) |
11 |
1 3 2
|
dchrmhm |
⊢ 𝐷 ⊆ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
13 |
11 12
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
14 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
15 |
14 4
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑍 ) ) |
16 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
17 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
18 |
16 17
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
19 |
15 18
|
mhm0 |
⊢ ( 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) → ( 𝑥 ‘ 1 ) = 1 ) |
20 |
13 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ‘ 1 ) = 1 ) |
21 |
10 20
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝐴 = 1 ) → ( 𝑥 ‘ 𝐴 ) = 1 ) |
22 |
21
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 1 ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ‘ 𝐴 ) = 1 ) |
23 |
22
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝐴 = 1 ) → Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = Σ 𝑥 ∈ 𝐷 1 ) |
24 |
1 2
|
dchrfi |
⊢ ( 𝑁 ∈ ℕ → 𝐷 ∈ Fin ) |
25 |
6 24
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
26 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
27 |
|
fsumconst |
⊢ ( ( 𝐷 ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑥 ∈ 𝐷 1 = ( ( ♯ ‘ 𝐷 ) · 1 ) ) |
28 |
25 26 27
|
sylancl |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐷 1 = ( ( ♯ ‘ 𝐷 ) · 1 ) ) |
29 |
|
hashcl |
⊢ ( 𝐷 ∈ Fin → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
30 |
6 24 29
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
31 |
30
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐷 ) ∈ ℂ ) |
32 |
31
|
mulid1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐷 ) · 1 ) = ( ♯ ‘ 𝐷 ) ) |
33 |
28 32
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐷 1 = ( ♯ ‘ 𝐷 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 1 ) → Σ 𝑥 ∈ 𝐷 1 = ( ♯ ‘ 𝐷 ) ) |
35 |
23 34
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 1 ) → Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ) |
36 |
|
df-ne |
⊢ ( 𝐴 ≠ 1 ↔ ¬ 𝐴 = 1 ) |
37 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 1 ) → 𝑁 ∈ ℕ ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 1 ) → 𝐴 ≠ 1 ) |
39 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 1 ) → 𝐴 ∈ 𝐵 ) |
40 |
1 3 2 5 4 37 38 39
|
dchrpt |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 1 ) → ∃ 𝑦 ∈ 𝐷 ( 𝑦 ‘ 𝐴 ) ≠ 1 ) |
41 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → 𝑁 ∈ ℕ ) |
42 |
41 24
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → 𝐷 ∈ Fin ) |
43 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
44 |
1 3 2 5 43
|
dchrf |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 : 𝐵 ⟶ ℂ ) |
45 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → 𝐴 ∈ 𝐵 ) |
46 |
45
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝐵 ) |
47 |
44 46
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ‘ 𝐴 ) ∈ ℂ ) |
48 |
42 47
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ∈ ℂ ) |
49 |
|
0cnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → 0 ∈ ℂ ) |
50 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → 𝑦 ∈ 𝐷 ) |
51 |
1 3 2 5 50
|
dchrf |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → 𝑦 : 𝐵 ⟶ ℂ ) |
52 |
51 45
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( 𝑦 ‘ 𝐴 ) ∈ ℂ ) |
53 |
|
subcl |
⊢ ( ( ( 𝑦 ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑦 ‘ 𝐴 ) − 1 ) ∈ ℂ ) |
54 |
52 26 53
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( 𝑦 ‘ 𝐴 ) − 1 ) ∈ ℂ ) |
55 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( 𝑦 ‘ 𝐴 ) ≠ 1 ) |
56 |
|
subeq0 |
⊢ ( ( ( 𝑦 ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑦 ‘ 𝐴 ) − 1 ) = 0 ↔ ( 𝑦 ‘ 𝐴 ) = 1 ) ) |
57 |
52 26 56
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( ( 𝑦 ‘ 𝐴 ) − 1 ) = 0 ↔ ( 𝑦 ‘ 𝐴 ) = 1 ) ) |
58 |
57
|
necon3bid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( ( 𝑦 ‘ 𝐴 ) − 1 ) ≠ 0 ↔ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) |
59 |
55 58
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( 𝑦 ‘ 𝐴 ) − 1 ) ≠ 0 ) |
60 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
61 |
60
|
fveq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ‘ 𝐴 ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ‘ 𝐴 ) ) |
62 |
61
|
cbvsumv |
⊢ Σ 𝑧 ∈ 𝐷 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ‘ 𝐴 ) = Σ 𝑥 ∈ 𝐷 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ‘ 𝐴 ) |
63 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
64 |
50
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) |
65 |
1 3 2 63 64 43
|
dchrmul |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ∘f · 𝑥 ) ) |
66 |
65
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ‘ 𝐴 ) = ( ( 𝑦 ∘f · 𝑥 ) ‘ 𝐴 ) ) |
67 |
51
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑦 : 𝐵 ⟶ ℂ ) |
68 |
67
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑦 Fn 𝐵 ) |
69 |
44
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 Fn 𝐵 ) |
70 |
5
|
fvexi |
⊢ 𝐵 ∈ V |
71 |
70
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ V ) |
72 |
|
fnfvof |
⊢ ( ( ( 𝑦 Fn 𝐵 ∧ 𝑥 Fn 𝐵 ) ∧ ( 𝐵 ∈ V ∧ 𝐴 ∈ 𝐵 ) ) → ( ( 𝑦 ∘f · 𝑥 ) ‘ 𝐴 ) = ( ( 𝑦 ‘ 𝐴 ) · ( 𝑥 ‘ 𝐴 ) ) ) |
73 |
68 69 71 46 72
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑦 ∘f · 𝑥 ) ‘ 𝐴 ) = ( ( 𝑦 ‘ 𝐴 ) · ( 𝑥 ‘ 𝐴 ) ) ) |
74 |
66 73
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ‘ 𝐴 ) = ( ( 𝑦 ‘ 𝐴 ) · ( 𝑥 ‘ 𝐴 ) ) ) |
75 |
74
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → Σ 𝑥 ∈ 𝐷 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ‘ 𝐴 ) = Σ 𝑥 ∈ 𝐷 ( ( 𝑦 ‘ 𝐴 ) · ( 𝑥 ‘ 𝐴 ) ) ) |
76 |
62 75
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → Σ 𝑧 ∈ 𝐷 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ‘ 𝐴 ) = Σ 𝑥 ∈ 𝐷 ( ( 𝑦 ‘ 𝐴 ) · ( 𝑥 ‘ 𝐴 ) ) ) |
77 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ‘ 𝐴 ) ) |
78 |
1
|
dchrabl |
⊢ ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel ) |
79 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
80 |
41 78 79
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → 𝐺 ∈ Grp ) |
81 |
|
eqid |
⊢ ( 𝑎 ∈ 𝐷 ↦ ( 𝑏 ∈ 𝐷 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) = ( 𝑎 ∈ 𝐷 ↦ ( 𝑏 ∈ 𝐷 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) |
82 |
81 2 63
|
grplactf1o |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑎 ∈ 𝐷 ↦ ( 𝑏 ∈ 𝐷 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) ‘ 𝑦 ) : 𝐷 –1-1-onto→ 𝐷 ) |
83 |
80 50 82
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( 𝑎 ∈ 𝐷 ↦ ( 𝑏 ∈ 𝐷 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) ‘ 𝑦 ) : 𝐷 –1-1-onto→ 𝐷 ) |
84 |
81 2
|
grplactval |
⊢ ( ( 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷 ) → ( ( ( 𝑎 ∈ 𝐷 ↦ ( 𝑏 ∈ 𝐷 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
85 |
50 84
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) ∧ 𝑧 ∈ 𝐷 ) → ( ( ( 𝑎 ∈ 𝐷 ↦ ( 𝑏 ∈ 𝐷 ↦ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
86 |
77 42 83 85 47
|
fsumf1o |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = Σ 𝑧 ∈ 𝐷 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ‘ 𝐴 ) ) |
87 |
42 52 47
|
fsummulc2 |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( 𝑦 ‘ 𝐴 ) · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) = Σ 𝑥 ∈ 𝐷 ( ( 𝑦 ‘ 𝐴 ) · ( 𝑥 ‘ 𝐴 ) ) ) |
88 |
76 86 87
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( 𝑦 ‘ 𝐴 ) · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) = Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) |
89 |
48
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( 1 · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) = Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) |
90 |
88 89
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( ( 𝑦 ‘ 𝐴 ) · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) − ( 1 · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) ) = ( Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) − Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) ) |
91 |
48
|
subidd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) − Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) = 0 ) |
92 |
90 91
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( ( 𝑦 ‘ 𝐴 ) · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) − ( 1 · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) ) = 0 ) |
93 |
26
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → 1 ∈ ℂ ) |
94 |
52 93 48
|
subdird |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( ( 𝑦 ‘ 𝐴 ) − 1 ) · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) = ( ( ( 𝑦 ‘ 𝐴 ) · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) − ( 1 · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) ) ) |
95 |
54
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( ( 𝑦 ‘ 𝐴 ) − 1 ) · 0 ) = 0 ) |
96 |
92 94 95
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → ( ( ( 𝑦 ‘ 𝐴 ) − 1 ) · Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) ) = ( ( ( 𝑦 ‘ 𝐴 ) − 1 ) · 0 ) ) |
97 |
48 49 54 59 96
|
mulcanad |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 1 ) ∧ ( 𝑦 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝐴 ) ≠ 1 ) ) → Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = 0 ) |
98 |
40 97
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 1 ) → Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = 0 ) |
99 |
36 98
|
sylan2br |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 1 ) → Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = 0 ) |
100 |
8 9 35 99
|
ifbothda |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐷 ( 𝑥 ‘ 𝐴 ) = if ( 𝐴 = 1 , ( ♯ ‘ 𝐷 ) , 0 ) ) |