Step |
Hyp |
Ref |
Expression |
1 |
|
sumdchr.g |
|
2 |
|
sumdchr.d |
|
3 |
|
sumdchr2.z |
|
4 |
|
sumdchr2.1 |
|
5 |
|
sumdchr2.b |
|
6 |
|
sumdchr2.n |
|
7 |
|
sumdchr2.x |
|
8 |
|
eqeq2 |
|
9 |
|
eqeq2 |
|
10 |
|
fveq2 |
|
11 |
1 3 2
|
dchrmhm |
|
12 |
|
simpr |
|
13 |
11 12
|
sselid |
|
14 |
|
eqid |
|
15 |
14 4
|
ringidval |
|
16 |
|
eqid |
|
17 |
|
cnfld1 |
|
18 |
16 17
|
ringidval |
|
19 |
15 18
|
mhm0 |
|
20 |
13 19
|
syl |
|
21 |
10 20
|
sylan9eqr |
|
22 |
21
|
an32s |
|
23 |
22
|
sumeq2dv |
|
24 |
1 2
|
dchrfi |
|
25 |
6 24
|
syl |
|
26 |
|
ax-1cn |
|
27 |
|
fsumconst |
|
28 |
25 26 27
|
sylancl |
|
29 |
|
hashcl |
|
30 |
6 24 29
|
3syl |
|
31 |
30
|
nn0cnd |
|
32 |
31
|
mulid1d |
|
33 |
28 32
|
eqtrd |
|
34 |
33
|
adantr |
|
35 |
23 34
|
eqtrd |
|
36 |
|
df-ne |
|
37 |
6
|
adantr |
|
38 |
|
simpr |
|
39 |
7
|
adantr |
|
40 |
1 3 2 5 4 37 38 39
|
dchrpt |
|
41 |
37
|
adantr |
|
42 |
41 24
|
syl |
|
43 |
|
simpr |
|
44 |
1 3 2 5 43
|
dchrf |
|
45 |
39
|
adantr |
|
46 |
45
|
adantr |
|
47 |
44 46
|
ffvelrnd |
|
48 |
42 47
|
fsumcl |
|
49 |
|
0cnd |
|
50 |
|
simprl |
|
51 |
1 3 2 5 50
|
dchrf |
|
52 |
51 45
|
ffvelrnd |
|
53 |
|
subcl |
|
54 |
52 26 53
|
sylancl |
|
55 |
|
simprr |
|
56 |
|
subeq0 |
|
57 |
52 26 56
|
sylancl |
|
58 |
57
|
necon3bid |
|
59 |
55 58
|
mpbird |
|
60 |
|
oveq2 |
|
61 |
60
|
fveq1d |
|
62 |
61
|
cbvsumv |
|
63 |
|
eqid |
|
64 |
50
|
adantr |
|
65 |
1 3 2 63 64 43
|
dchrmul |
|
66 |
65
|
fveq1d |
|
67 |
51
|
adantr |
|
68 |
67
|
ffnd |
|
69 |
44
|
ffnd |
|
70 |
5
|
fvexi |
|
71 |
70
|
a1i |
|
72 |
|
fnfvof |
|
73 |
68 69 71 46 72
|
syl22anc |
|
74 |
66 73
|
eqtrd |
|
75 |
74
|
sumeq2dv |
|
76 |
62 75
|
eqtrid |
|
77 |
|
fveq1 |
|
78 |
1
|
dchrabl |
|
79 |
|
ablgrp |
|
80 |
41 78 79
|
3syl |
|
81 |
|
eqid |
|
82 |
81 2 63
|
grplactf1o |
|
83 |
80 50 82
|
syl2anc |
|
84 |
81 2
|
grplactval |
|
85 |
50 84
|
sylan |
|
86 |
77 42 83 85 47
|
fsumf1o |
|
87 |
42 52 47
|
fsummulc2 |
|
88 |
76 86 87
|
3eqtr4rd |
|
89 |
48
|
mulid2d |
|
90 |
88 89
|
oveq12d |
|
91 |
48
|
subidd |
|
92 |
90 91
|
eqtrd |
|
93 |
26
|
a1i |
|
94 |
52 93 48
|
subdird |
|
95 |
54
|
mul01d |
|
96 |
92 94 95
|
3eqtr4d |
|
97 |
48 49 54 59 96
|
mulcanad |
|
98 |
40 97
|
rexlimddv |
|
99 |
36 98
|
sylan2br |
|
100 |
8 9 35 99
|
ifbothda |
|