Metamath Proof Explorer


Theorem sumdchr

Description: An orthogonality relation for Dirichlet characters: the sum of x ( A ) for fixed A and all x is 0 if A = 1 and phi ( n ) otherwise. Theorem 6.5.1 of Shapiro p. 230. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses sumdchr.g G=DChrN
sumdchr.d D=BaseG
sumdchr.z Z=/N
sumdchr.1 1˙=1Z
sumdchr.b B=BaseZ
sumdchr.n φN
sumdchr.a φAB
Assertion sumdchr φxDxA=ifA=1˙ϕN0

Proof

Step Hyp Ref Expression
1 sumdchr.g G=DChrN
2 sumdchr.d D=BaseG
3 sumdchr.z Z=/N
4 sumdchr.1 1˙=1Z
5 sumdchr.b B=BaseZ
6 sumdchr.n φN
7 sumdchr.a φAB
8 1 2 3 4 5 6 7 sumdchr2 φxDxA=ifA=1˙D0
9 1 2 dchrhash ND=ϕN
10 6 9 syl φD=ϕN
11 10 ifeq1d φifA=1˙D0=ifA=1˙ϕN0
12 8 11 eqtrd φxDxA=ifA=1˙ϕN0