Description: An orthogonality relation for Dirichlet characters: the sum of x ( A ) for fixed A and all x is 0 if A = 1 and phi ( n ) otherwise. Theorem 6.5.1 of Shapiro p. 230. (Contributed by Mario Carneiro, 28-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sumdchr.g | |
|
sumdchr.d | |
||
sumdchr.z | |
||
sumdchr.1 | |
||
sumdchr.b | |
||
sumdchr.n | |
||
sumdchr.a | |
||
Assertion | sumdchr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumdchr.g | |
|
2 | sumdchr.d | |
|
3 | sumdchr.z | |
|
4 | sumdchr.1 | |
|
5 | sumdchr.b | |
|
6 | sumdchr.n | |
|
7 | sumdchr.a | |
|
8 | 1 2 3 4 5 6 7 | sumdchr2 | |
9 | 1 2 | dchrhash | |
10 | 6 9 | syl | |
11 | 10 | ifeq1d | |
12 | 8 11 | eqtrd | |