Metamath Proof Explorer


Theorem suprub

Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004)

Ref Expression
Assertion suprub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → 𝐴 ⊆ ℝ )
2 1 sselda ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵𝐴 ) → 𝐵 ∈ ℝ )
3 suprcl ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ )
4 3 adantr ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ )
5 ltso < Or ℝ
6 5 a1i ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → < Or ℝ )
7 sup3 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
8 6 7 supub ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ( 𝐵𝐴 → ¬ sup ( 𝐴 , ℝ , < ) < 𝐵 ) )
9 8 imp ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵𝐴 ) → ¬ sup ( 𝐴 , ℝ , < ) < 𝐵 )
10 2 4 9 nltled ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) )