Step |
Hyp |
Ref |
Expression |
1 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
3 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
4 |
|
ccatlen |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
5 |
4
|
oveq2d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) = ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
6 |
5
|
eleq2d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ↔ 𝑁 ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
7 |
6
|
biimpar |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑁 ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
8 |
7
|
adantrl |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
9 |
|
swrdvalfn |
⊢ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr ⟨ 𝑀 , 𝑁 ⟩ ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
10 |
2 3 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr ⟨ 𝑀 , 𝑁 ⟩ ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |