Metamath Proof Explorer


Theorem swrdccatfn

Description: The subword of a concatenation as function. (Contributed by Alexander van der Vekens, 27-May-2018)

Ref Expression
Assertion swrdccatfn AWordVBWordVM0NN0A+BA++BsubstrMNFn0..^NM

Proof

Step Hyp Ref Expression
1 ccatcl AWordVBWordVA++BWordV
2 1 adantr AWordVBWordVM0NN0A+BA++BWordV
3 simprl AWordVBWordVM0NN0A+BM0N
4 ccatlen AWordVBWordVA++B=A+B
5 4 oveq2d AWordVBWordV0A++B=0A+B
6 5 eleq2d AWordVBWordVN0A++BN0A+B
7 6 biimpar AWordVBWordVN0A+BN0A++B
8 7 adantrl AWordVBWordVM0NN0A+BN0A++B
9 swrdvalfn A++BWordVM0NN0A++BA++BsubstrMNFn0..^NM
10 2 3 8 9 syl3anc AWordVBWordVM0NN0A+BA++BsubstrMNFn0..^NM