| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐶 ∈ TermCat ∧ 𝑑 ∈ Cat ) → 𝑑 ∈ Cat ) |
| 2 |
|
simpl |
⊢ ( ( 𝐶 ∈ TermCat ∧ 𝑑 ∈ Cat ) → 𝐶 ∈ TermCat ) |
| 3 |
1 2
|
functermceu |
⊢ ( ( 𝐶 ∈ TermCat ∧ 𝑑 ∈ Cat ) → ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) |
| 4 |
3
|
ralrimiva |
⊢ ( 𝐶 ∈ TermCat → ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) |
| 5 |
|
inss2 |
⊢ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ⊆ Cat |
| 6 |
|
ssralv |
⊢ ( ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ⊆ Cat → ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) |
| 8 |
|
termc2 |
⊢ ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → 𝐶 ∈ TermCat ) |
| 9 |
7 8
|
syl |
⊢ ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → 𝐶 ∈ TermCat ) |
| 10 |
4 9
|
impbii |
⊢ ( 𝐶 ∈ TermCat ↔ ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) |