Metamath Proof Explorer
Description: The inner product operation of a structure augmented with a norm.
(Contributed by Mario Carneiro, 2-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
tngbas.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
|
|
tngip.2 |
⊢ , = ( ·𝑖 ‘ 𝐺 ) |
|
Assertion |
tngip |
⊢ ( 𝑁 ∈ 𝑉 → , = ( ·𝑖 ‘ 𝑇 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
tngbas.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
2 |
|
tngip.2 |
⊢ , = ( ·𝑖 ‘ 𝐺 ) |
3 |
|
df-ip |
⊢ ·𝑖 = Slot 8 |
4 |
|
8nn |
⊢ 8 ∈ ℕ |
5 |
|
8lt9 |
⊢ 8 < 9 |
6 |
1 3 4 5
|
tnglem |
⊢ ( 𝑁 ∈ 𝑉 → ( ·𝑖 ‘ 𝐺 ) = ( ·𝑖 ‘ 𝑇 ) ) |
7 |
2 6
|
syl5eq |
⊢ ( 𝑁 ∈ 𝑉 → , = ( ·𝑖 ‘ 𝑇 ) ) |