Metamath Proof Explorer


Theorem topfne

Description: Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009)

Ref Expression
Hypotheses topfne.1 𝑋 = 𝐽
topfne.2 𝑌 = 𝐾
Assertion topfne ( ( 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) → ( 𝐽𝐾𝐽 Fne 𝐾 ) )

Proof

Step Hyp Ref Expression
1 topfne.1 𝑋 = 𝐽
2 topfne.2 𝑌 = 𝐾
3 tgtop ( 𝐾 ∈ Top → ( topGen ‘ 𝐾 ) = 𝐾 )
4 3 sseq2d ( 𝐾 ∈ Top → ( 𝐽 ⊆ ( topGen ‘ 𝐾 ) ↔ 𝐽𝐾 ) )
5 4 bicomd ( 𝐾 ∈ Top → ( 𝐽𝐾𝐽 ⊆ ( topGen ‘ 𝐾 ) ) )
6 1 2 isfne4 ( 𝐽 Fne 𝐾 ↔ ( 𝑋 = 𝑌𝐽 ⊆ ( topGen ‘ 𝐾 ) ) )
7 6 baibr ( 𝑋 = 𝑌 → ( 𝐽 ⊆ ( topGen ‘ 𝐾 ) ↔ 𝐽 Fne 𝐾 ) )
8 5 7 sylan9bb ( ( 𝐾 ∈ Top ∧ 𝑋 = 𝑌 ) → ( 𝐽𝐾𝐽 Fne 𝐾 ) )