Metamath Proof Explorer


Theorem topfne

Description: Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009)

Ref Expression
Hypotheses topfne.1
|- X = U. J
topfne.2
|- Y = U. K
Assertion topfne
|- ( ( K e. Top /\ X = Y ) -> ( J C_ K <-> J Fne K ) )

Proof

Step Hyp Ref Expression
1 topfne.1
 |-  X = U. J
2 topfne.2
 |-  Y = U. K
3 tgtop
 |-  ( K e. Top -> ( topGen ` K ) = K )
4 3 sseq2d
 |-  ( K e. Top -> ( J C_ ( topGen ` K ) <-> J C_ K ) )
5 4 bicomd
 |-  ( K e. Top -> ( J C_ K <-> J C_ ( topGen ` K ) ) )
6 1 2 isfne4
 |-  ( J Fne K <-> ( X = Y /\ J C_ ( topGen ` K ) ) )
7 6 baibr
 |-  ( X = Y -> ( J C_ ( topGen ` K ) <-> J Fne K ) )
8 5 7 sylan9bb
 |-  ( ( K e. Top /\ X = Y ) -> ( J C_ K <-> J Fne K ) )