| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topfneec.1 |
|- .~ = ( Fne i^i `' Fne ) |
| 2 |
1
|
fneer |
|- .~ Er _V |
| 3 |
|
errel |
|- ( .~ Er _V -> Rel .~ ) |
| 4 |
2 3
|
ax-mp |
|- Rel .~ |
| 5 |
|
relelec |
|- ( Rel .~ -> ( A e. [ J ] .~ <-> J .~ A ) ) |
| 6 |
4 5
|
ax-mp |
|- ( A e. [ J ] .~ <-> J .~ A ) |
| 7 |
4
|
brrelex2i |
|- ( J .~ A -> A e. _V ) |
| 8 |
7
|
a1i |
|- ( J e. Top -> ( J .~ A -> A e. _V ) ) |
| 9 |
|
eleq1 |
|- ( ( topGen ` A ) = J -> ( ( topGen ` A ) e. Top <-> J e. Top ) ) |
| 10 |
9
|
biimparc |
|- ( ( J e. Top /\ ( topGen ` A ) = J ) -> ( topGen ` A ) e. Top ) |
| 11 |
|
tgclb |
|- ( A e. TopBases <-> ( topGen ` A ) e. Top ) |
| 12 |
10 11
|
sylibr |
|- ( ( J e. Top /\ ( topGen ` A ) = J ) -> A e. TopBases ) |
| 13 |
|
elex |
|- ( A e. TopBases -> A e. _V ) |
| 14 |
12 13
|
syl |
|- ( ( J e. Top /\ ( topGen ` A ) = J ) -> A e. _V ) |
| 15 |
14
|
ex |
|- ( J e. Top -> ( ( topGen ` A ) = J -> A e. _V ) ) |
| 16 |
1
|
fneval |
|- ( ( J e. Top /\ A e. _V ) -> ( J .~ A <-> ( topGen ` J ) = ( topGen ` A ) ) ) |
| 17 |
|
tgtop |
|- ( J e. Top -> ( topGen ` J ) = J ) |
| 18 |
17
|
eqeq1d |
|- ( J e. Top -> ( ( topGen ` J ) = ( topGen ` A ) <-> J = ( topGen ` A ) ) ) |
| 19 |
|
eqcom |
|- ( J = ( topGen ` A ) <-> ( topGen ` A ) = J ) |
| 20 |
18 19
|
bitrdi |
|- ( J e. Top -> ( ( topGen ` J ) = ( topGen ` A ) <-> ( topGen ` A ) = J ) ) |
| 21 |
20
|
adantr |
|- ( ( J e. Top /\ A e. _V ) -> ( ( topGen ` J ) = ( topGen ` A ) <-> ( topGen ` A ) = J ) ) |
| 22 |
16 21
|
bitrd |
|- ( ( J e. Top /\ A e. _V ) -> ( J .~ A <-> ( topGen ` A ) = J ) ) |
| 23 |
22
|
ex |
|- ( J e. Top -> ( A e. _V -> ( J .~ A <-> ( topGen ` A ) = J ) ) ) |
| 24 |
8 15 23
|
pm5.21ndd |
|- ( J e. Top -> ( J .~ A <-> ( topGen ` A ) = J ) ) |
| 25 |
6 24
|
bitrid |
|- ( J e. Top -> ( A e. [ J ] .~ <-> ( topGen ` A ) = J ) ) |