Description: A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009) (Proof shortened by Mario Carneiro, 11-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | topfneec.1 | |
|
Assertion | topfneec | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topfneec.1 | |
|
2 | 1 | fneer | |
3 | errel | |
|
4 | 2 3 | ax-mp | |
5 | relelec | |
|
6 | 4 5 | ax-mp | |
7 | 4 | brrelex2i | |
8 | 7 | a1i | |
9 | eleq1 | |
|
10 | 9 | biimparc | |
11 | tgclb | |
|
12 | 10 11 | sylibr | |
13 | elex | |
|
14 | 12 13 | syl | |
15 | 14 | ex | |
16 | 1 | fneval | |
17 | tgtop | |
|
18 | 17 | eqeq1d | |
19 | eqcom | |
|
20 | 18 19 | bitrdi | |
21 | 20 | adantr | |
22 | 16 21 | bitrd | |
23 | 22 | ex | |
24 | 8 15 23 | pm5.21ndd | |
25 | 6 24 | bitrid | |