Metamath Proof Explorer


Theorem fneer

Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis fneval.1 ˙=FneFne-1
Assertion fneer ˙ErV

Proof

Step Hyp Ref Expression
1 fneval.1 ˙=FneFne-1
2 fveq2 x=ytopGenx=topGeny
3 inss1 FneFne-1Fne
4 1 3 eqsstri ˙Fne
5 fnerel RelFne
6 relss ˙FneRelFneRel˙
7 4 5 6 mp2 Rel˙
8 dfrel4v Rel˙˙=xy|x˙y
9 7 8 mpbi ˙=xy|x˙y
10 1 fneval xVyVx˙ytopGenx=topGeny
11 10 el2v x˙ytopGenx=topGeny
12 11 opabbii xy|x˙y=xy|topGenx=topGeny
13 9 12 eqtri ˙=xy|topGenx=topGeny
14 2 13 eqer ˙ErV