Metamath Proof Explorer


Theorem fneer

Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis fneval.1 ˙ = Fne Fne -1
Assertion fneer ˙ Er V

Proof

Step Hyp Ref Expression
1 fneval.1 ˙ = Fne Fne -1
2 fveq2 x = y topGen x = topGen y
3 inss1 Fne Fne -1 Fne
4 1 3 eqsstri ˙ Fne
5 fnerel Rel Fne
6 relss ˙ Fne Rel Fne Rel ˙
7 4 5 6 mp2 Rel ˙
8 dfrel4v Rel ˙ ˙ = x y | x ˙ y
9 7 8 mpbi ˙ = x y | x ˙ y
10 1 fneval x V y V x ˙ y topGen x = topGen y
11 10 el2v x ˙ y topGen x = topGen y
12 11 opabbii x y | x ˙ y = x y | topGen x = topGen y
13 9 12 eqtri ˙ = x y | topGen x = topGen y
14 2 13 eqer ˙ Er V