Metamath Proof Explorer


Theorem topfneec

Description: A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis topfneec.1 = ( Fne ∩ Fne )
Assertion topfneec ( 𝐽 ∈ Top → ( 𝐴 ∈ [ 𝐽 ] ↔ ( topGen ‘ 𝐴 ) = 𝐽 ) )

Proof

Step Hyp Ref Expression
1 topfneec.1 = ( Fne ∩ Fne )
2 1 fneer Er V
3 errel ( Er V → Rel )
4 2 3 ax-mp Rel
5 relelec ( Rel → ( 𝐴 ∈ [ 𝐽 ] 𝐽 𝐴 ) )
6 4 5 ax-mp ( 𝐴 ∈ [ 𝐽 ] 𝐽 𝐴 )
7 4 brrelex2i ( 𝐽 𝐴𝐴 ∈ V )
8 7 a1i ( 𝐽 ∈ Top → ( 𝐽 𝐴𝐴 ∈ V ) )
9 eleq1 ( ( topGen ‘ 𝐴 ) = 𝐽 → ( ( topGen ‘ 𝐴 ) ∈ Top ↔ 𝐽 ∈ Top ) )
10 9 biimparc ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐴 ) = 𝐽 ) → ( topGen ‘ 𝐴 ) ∈ Top )
11 tgclb ( 𝐴 ∈ TopBases ↔ ( topGen ‘ 𝐴 ) ∈ Top )
12 10 11 sylibr ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐴 ) = 𝐽 ) → 𝐴 ∈ TopBases )
13 elex ( 𝐴 ∈ TopBases → 𝐴 ∈ V )
14 12 13 syl ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐴 ) = 𝐽 ) → 𝐴 ∈ V )
15 14 ex ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐴 ) = 𝐽𝐴 ∈ V ) )
16 1 fneval ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝐽 𝐴 ↔ ( topGen ‘ 𝐽 ) = ( topGen ‘ 𝐴 ) ) )
17 tgtop ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 )
18 17 eqeq1d ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐽 ) = ( topGen ‘ 𝐴 ) ↔ 𝐽 = ( topGen ‘ 𝐴 ) ) )
19 eqcom ( 𝐽 = ( topGen ‘ 𝐴 ) ↔ ( topGen ‘ 𝐴 ) = 𝐽 )
20 18 19 bitrdi ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐽 ) = ( topGen ‘ 𝐴 ) ↔ ( topGen ‘ 𝐴 ) = 𝐽 ) )
21 20 adantr ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( ( topGen ‘ 𝐽 ) = ( topGen ‘ 𝐴 ) ↔ ( topGen ‘ 𝐴 ) = 𝐽 ) )
22 16 21 bitrd ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝐽 𝐴 ↔ ( topGen ‘ 𝐴 ) = 𝐽 ) )
23 22 ex ( 𝐽 ∈ Top → ( 𝐴 ∈ V → ( 𝐽 𝐴 ↔ ( topGen ‘ 𝐴 ) = 𝐽 ) ) )
24 8 15 23 pm5.21ndd ( 𝐽 ∈ Top → ( 𝐽 𝐴 ↔ ( topGen ‘ 𝐴 ) = 𝐽 ) )
25 6 24 syl5bb ( 𝐽 ∈ Top → ( 𝐴 ∈ [ 𝐽 ] ↔ ( topGen ‘ 𝐴 ) = 𝐽 ) )