Step |
Hyp |
Ref |
Expression |
1 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑀 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
2 |
|
trel |
⊢ ( Tr 𝑀 → ( ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑀 ) → 𝑧 ∈ 𝑀 ) ) |
3 |
2
|
ancomsd |
⊢ ( Tr 𝑀 → ( ( 𝑥 ∈ 𝑀 ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑀 ) ) |
4 |
3
|
expdimp |
⊢ ( ( Tr 𝑀 ∧ 𝑥 ∈ 𝑀 ) → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑀 ) ) |
5 |
4
|
adantrr |
⊢ ( ( Tr 𝑀 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑀 ) ) |
6 |
5
|
adantr |
⊢ ( ( ( Tr 𝑀 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑀 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑀 ) ) |
7 |
|
trel |
⊢ ( Tr 𝑀 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑀 ) → 𝑧 ∈ 𝑀 ) ) |
8 |
7
|
ancomsd |
⊢ ( Tr 𝑀 → ( ( 𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ 𝑀 ) ) |
9 |
8
|
expdimp |
⊢ ( ( Tr 𝑀 ∧ 𝑦 ∈ 𝑀 ) → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑀 ) ) |
10 |
9
|
adantrl |
⊢ ( ( Tr 𝑀 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑀 ) ) |
11 |
10
|
adantr |
⊢ ( ( ( Tr 𝑀 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑀 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑀 ) ) |
12 |
|
simpr |
⊢ ( ( ( Tr 𝑀 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑀 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) → ( 𝑧 ∈ 𝑀 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
13 |
6 11 12
|
pm5.21ndd |
⊢ ( ( ( Tr 𝑀 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑀 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
14 |
13
|
ex |
⊢ ( ( Tr 𝑀 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( 𝑧 ∈ 𝑀 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
15 |
14
|
alimdv |
⊢ ( ( Tr 𝑀 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑀 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
16 |
1 15
|
biimtrid |
⊢ ( ( Tr 𝑀 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
17 |
|
ax-ext |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) |
18 |
16 17
|
syl6 |
⊢ ( ( Tr 𝑀 ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |
19 |
18
|
ralrimivva |
⊢ ( Tr 𝑀 → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |