Metamath Proof Explorer


Theorem modelaxreplem1

Description: Lemma for modelaxrep . We show that M is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypotheses modelaxreplem.1 ( 𝜓𝑥𝑀 )
modelaxreplem.2 ( 𝜓 → ∀ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀 ) → ran 𝑓𝑀 ) )
modelaxreplem.3 ( 𝜓 → ∅ ∈ 𝑀 )
modelaxreplem.4 ( 𝜓𝑥𝑀 )
modelaxreplem1.5 𝐴𝑥
Assertion modelaxreplem1 ( 𝜓𝐴𝑀 )

Proof

Step Hyp Ref Expression
1 modelaxreplem.1 ( 𝜓𝑥𝑀 )
2 modelaxreplem.2 ( 𝜓 → ∀ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀 ) → ran 𝑓𝑀 ) )
3 modelaxreplem.3 ( 𝜓 → ∅ ∈ 𝑀 )
4 modelaxreplem.4 ( 𝜓𝑥𝑀 )
5 modelaxreplem1.5 𝐴𝑥
6 eleq1 ( 𝐴 = ∅ → ( 𝐴𝑀 ↔ ∅ ∈ 𝑀 ) )
7 3 6 syl5ibrcom ( 𝜓 → ( 𝐴 = ∅ → 𝐴𝑀 ) )
8 vex 𝑥 ∈ V
9 8 5 ssexi 𝐴 ∈ V
10 9 0sdom ( ∅ ≺ 𝐴𝐴 ≠ ∅ )
11 ssdomg ( 𝑥 ∈ V → ( 𝐴𝑥𝐴𝑥 ) )
12 8 5 11 mp2 𝐴𝑥
13 fodomr ( ( ∅ ≺ 𝐴𝐴𝑥 ) → ∃ 𝑔 𝑔 : 𝑥onto𝐴 )
14 12 13 mpan2 ( ∅ ≺ 𝐴 → ∃ 𝑔 𝑔 : 𝑥onto𝐴 )
15 10 14 sylbir ( 𝐴 ≠ ∅ → ∃ 𝑔 𝑔 : 𝑥onto𝐴 )
16 df-fo ( 𝑔 : 𝑥onto𝐴 ↔ ( 𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴 ) )
17 df-fn ( 𝑔 Fn 𝑥 ↔ ( Fun 𝑔 ∧ dom 𝑔 = 𝑥 ) )
18 eleq1 ( dom 𝑔 = 𝑥 → ( dom 𝑔𝑀𝑥𝑀 ) )
19 4 18 syl5ibrcom ( 𝜓 → ( dom 𝑔 = 𝑥 → dom 𝑔𝑀 ) )
20 19 anim2d ( 𝜓 → ( ( Fun 𝑔 ∧ dom 𝑔 = 𝑥 ) → ( Fun 𝑔 ∧ dom 𝑔𝑀 ) ) )
21 17 20 biimtrid ( 𝜓 → ( 𝑔 Fn 𝑥 → ( Fun 𝑔 ∧ dom 𝑔𝑀 ) ) )
22 5 1 sstrid ( 𝜓𝐴𝑀 )
23 sseq1 ( ran 𝑔 = 𝐴 → ( ran 𝑔𝑀𝐴𝑀 ) )
24 22 23 syl5ibrcom ( 𝜓 → ( ran 𝑔 = 𝐴 → ran 𝑔𝑀 ) )
25 df-3an ( ( Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀 ) ↔ ( ( Fun 𝑔 ∧ dom 𝑔𝑀 ) ∧ ran 𝑔𝑀 ) )
26 funeq ( 𝑓 = 𝑔 → ( Fun 𝑓 ↔ Fun 𝑔 ) )
27 dmeq ( 𝑓 = 𝑔 → dom 𝑓 = dom 𝑔 )
28 27 eleq1d ( 𝑓 = 𝑔 → ( dom 𝑓𝑀 ↔ dom 𝑔𝑀 ) )
29 rneq ( 𝑓 = 𝑔 → ran 𝑓 = ran 𝑔 )
30 29 sseq1d ( 𝑓 = 𝑔 → ( ran 𝑓𝑀 ↔ ran 𝑔𝑀 ) )
31 26 28 30 3anbi123d ( 𝑓 = 𝑔 → ( ( Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀 ) ↔ ( Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀 ) ) )
32 29 eleq1d ( 𝑓 = 𝑔 → ( ran 𝑓𝑀 ↔ ran 𝑔𝑀 ) )
33 31 32 imbi12d ( 𝑓 = 𝑔 → ( ( ( Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀 ) → ran 𝑓𝑀 ) ↔ ( ( Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀 ) → ran 𝑔𝑀 ) ) )
34 33 spvv ( ∀ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀 ) → ran 𝑓𝑀 ) → ( ( Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀 ) → ran 𝑔𝑀 ) )
35 2 34 syl ( 𝜓 → ( ( Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀 ) → ran 𝑔𝑀 ) )
36 25 35 biimtrrid ( 𝜓 → ( ( ( Fun 𝑔 ∧ dom 𝑔𝑀 ) ∧ ran 𝑔𝑀 ) → ran 𝑔𝑀 ) )
37 21 24 36 syl2and ( 𝜓 → ( ( 𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴 ) → ran 𝑔𝑀 ) )
38 eleq1 ( ran 𝑔 = 𝐴 → ( ran 𝑔𝑀𝐴𝑀 ) )
39 38 adantl ( ( 𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴 ) → ( ran 𝑔𝑀𝐴𝑀 ) )
40 37 39 mpbidi ( 𝜓 → ( ( 𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴 ) → 𝐴𝑀 ) )
41 16 40 biimtrid ( 𝜓 → ( 𝑔 : 𝑥onto𝐴𝐴𝑀 ) )
42 41 exlimdv ( 𝜓 → ( ∃ 𝑔 𝑔 : 𝑥onto𝐴𝐴𝑀 ) )
43 15 42 syl5 ( 𝜓 → ( 𝐴 ≠ ∅ → 𝐴𝑀 ) )
44 7 43 pm2.61dne ( 𝜓𝐴𝑀 )