Metamath Proof Explorer


Theorem modelaxreplem1

Description: Lemma for modelaxrep . We show that M is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypotheses modelaxreplem.1 ψ x M
modelaxreplem.2 ψ f Fun f dom f M ran f M ran f M
modelaxreplem.3 ψ M
modelaxreplem.4 ψ x M
modelaxreplem1.5 A x
Assertion modelaxreplem1 ψ A M

Proof

Step Hyp Ref Expression
1 modelaxreplem.1 ψ x M
2 modelaxreplem.2 ψ f Fun f dom f M ran f M ran f M
3 modelaxreplem.3 ψ M
4 modelaxreplem.4 ψ x M
5 modelaxreplem1.5 A x
6 eleq1 A = A M M
7 3 6 syl5ibrcom ψ A = A M
8 vex x V
9 8 5 ssexi A V
10 9 0sdom A A
11 ssdomg x V A x A x
12 8 5 11 mp2 A x
13 fodomr A A x g g : x onto A
14 12 13 mpan2 A g g : x onto A
15 10 14 sylbir A g g : x onto A
16 df-fo g : x onto A g Fn x ran g = A
17 df-fn g Fn x Fun g dom g = x
18 eleq1 dom g = x dom g M x M
19 4 18 syl5ibrcom ψ dom g = x dom g M
20 19 anim2d ψ Fun g dom g = x Fun g dom g M
21 17 20 biimtrid ψ g Fn x Fun g dom g M
22 5 1 sstrid ψ A M
23 sseq1 ran g = A ran g M A M
24 22 23 syl5ibrcom ψ ran g = A ran g M
25 df-3an Fun g dom g M ran g M Fun g dom g M ran g M
26 funeq f = g Fun f Fun g
27 dmeq f = g dom f = dom g
28 27 eleq1d f = g dom f M dom g M
29 rneq f = g ran f = ran g
30 29 sseq1d f = g ran f M ran g M
31 26 28 30 3anbi123d f = g Fun f dom f M ran f M Fun g dom g M ran g M
32 29 eleq1d f = g ran f M ran g M
33 31 32 imbi12d f = g Fun f dom f M ran f M ran f M Fun g dom g M ran g M ran g M
34 33 spvv f Fun f dom f M ran f M ran f M Fun g dom g M ran g M ran g M
35 2 34 syl ψ Fun g dom g M ran g M ran g M
36 25 35 biimtrrid ψ Fun g dom g M ran g M ran g M
37 21 24 36 syl2and ψ g Fn x ran g = A ran g M
38 eleq1 ran g = A ran g M A M
39 38 adantl g Fn x ran g = A ran g M A M
40 37 39 mpbidi ψ g Fn x ran g = A A M
41 16 40 biimtrid ψ g : x onto A A M
42 41 exlimdv ψ g g : x onto A A M
43 15 42 syl5 ψ A A M
44 7 43 pm2.61dne ψ A M