Step |
Hyp |
Ref |
Expression |
1 |
|
modelaxreplem.1 |
|- ( ps -> x C_ M ) |
2 |
|
modelaxreplem.2 |
|- ( ps -> A. f ( ( Fun f /\ dom f e. M /\ ran f C_ M ) -> ran f e. M ) ) |
3 |
|
modelaxreplem.3 |
|- ( ps -> (/) e. M ) |
4 |
|
modelaxreplem.4 |
|- ( ps -> x e. M ) |
5 |
|
modelaxreplem1.5 |
|- A C_ x |
6 |
|
eleq1 |
|- ( A = (/) -> ( A e. M <-> (/) e. M ) ) |
7 |
3 6
|
syl5ibrcom |
|- ( ps -> ( A = (/) -> A e. M ) ) |
8 |
|
vex |
|- x e. _V |
9 |
8 5
|
ssexi |
|- A e. _V |
10 |
9
|
0sdom |
|- ( (/) ~< A <-> A =/= (/) ) |
11 |
|
ssdomg |
|- ( x e. _V -> ( A C_ x -> A ~<_ x ) ) |
12 |
8 5 11
|
mp2 |
|- A ~<_ x |
13 |
|
fodomr |
|- ( ( (/) ~< A /\ A ~<_ x ) -> E. g g : x -onto-> A ) |
14 |
12 13
|
mpan2 |
|- ( (/) ~< A -> E. g g : x -onto-> A ) |
15 |
10 14
|
sylbir |
|- ( A =/= (/) -> E. g g : x -onto-> A ) |
16 |
|
df-fo |
|- ( g : x -onto-> A <-> ( g Fn x /\ ran g = A ) ) |
17 |
|
df-fn |
|- ( g Fn x <-> ( Fun g /\ dom g = x ) ) |
18 |
|
eleq1 |
|- ( dom g = x -> ( dom g e. M <-> x e. M ) ) |
19 |
4 18
|
syl5ibrcom |
|- ( ps -> ( dom g = x -> dom g e. M ) ) |
20 |
19
|
anim2d |
|- ( ps -> ( ( Fun g /\ dom g = x ) -> ( Fun g /\ dom g e. M ) ) ) |
21 |
17 20
|
biimtrid |
|- ( ps -> ( g Fn x -> ( Fun g /\ dom g e. M ) ) ) |
22 |
5 1
|
sstrid |
|- ( ps -> A C_ M ) |
23 |
|
sseq1 |
|- ( ran g = A -> ( ran g C_ M <-> A C_ M ) ) |
24 |
22 23
|
syl5ibrcom |
|- ( ps -> ( ran g = A -> ran g C_ M ) ) |
25 |
|
df-3an |
|- ( ( Fun g /\ dom g e. M /\ ran g C_ M ) <-> ( ( Fun g /\ dom g e. M ) /\ ran g C_ M ) ) |
26 |
|
funeq |
|- ( f = g -> ( Fun f <-> Fun g ) ) |
27 |
|
dmeq |
|- ( f = g -> dom f = dom g ) |
28 |
27
|
eleq1d |
|- ( f = g -> ( dom f e. M <-> dom g e. M ) ) |
29 |
|
rneq |
|- ( f = g -> ran f = ran g ) |
30 |
29
|
sseq1d |
|- ( f = g -> ( ran f C_ M <-> ran g C_ M ) ) |
31 |
26 28 30
|
3anbi123d |
|- ( f = g -> ( ( Fun f /\ dom f e. M /\ ran f C_ M ) <-> ( Fun g /\ dom g e. M /\ ran g C_ M ) ) ) |
32 |
29
|
eleq1d |
|- ( f = g -> ( ran f e. M <-> ran g e. M ) ) |
33 |
31 32
|
imbi12d |
|- ( f = g -> ( ( ( Fun f /\ dom f e. M /\ ran f C_ M ) -> ran f e. M ) <-> ( ( Fun g /\ dom g e. M /\ ran g C_ M ) -> ran g e. M ) ) ) |
34 |
33
|
spvv |
|- ( A. f ( ( Fun f /\ dom f e. M /\ ran f C_ M ) -> ran f e. M ) -> ( ( Fun g /\ dom g e. M /\ ran g C_ M ) -> ran g e. M ) ) |
35 |
2 34
|
syl |
|- ( ps -> ( ( Fun g /\ dom g e. M /\ ran g C_ M ) -> ran g e. M ) ) |
36 |
25 35
|
biimtrrid |
|- ( ps -> ( ( ( Fun g /\ dom g e. M ) /\ ran g C_ M ) -> ran g e. M ) ) |
37 |
21 24 36
|
syl2and |
|- ( ps -> ( ( g Fn x /\ ran g = A ) -> ran g e. M ) ) |
38 |
|
eleq1 |
|- ( ran g = A -> ( ran g e. M <-> A e. M ) ) |
39 |
38
|
adantl |
|- ( ( g Fn x /\ ran g = A ) -> ( ran g e. M <-> A e. M ) ) |
40 |
37 39
|
mpbidi |
|- ( ps -> ( ( g Fn x /\ ran g = A ) -> A e. M ) ) |
41 |
16 40
|
biimtrid |
|- ( ps -> ( g : x -onto-> A -> A e. M ) ) |
42 |
41
|
exlimdv |
|- ( ps -> ( E. g g : x -onto-> A -> A e. M ) ) |
43 |
15 42
|
syl5 |
|- ( ps -> ( A =/= (/) -> A e. M ) ) |
44 |
7 43
|
pm2.61dne |
|- ( ps -> A e. M ) |