Step |
Hyp |
Ref |
Expression |
1 |
|
modelaxreplem.1 |
|- ( ps -> x C_ M ) |
2 |
|
modelaxreplem.2 |
|- ( ps -> A. f ( ( Fun f /\ dom f e. M /\ ran f C_ M ) -> ran f e. M ) ) |
3 |
|
modelaxreplem.3 |
|- ( ps -> (/) e. M ) |
4 |
|
modelaxreplem.4 |
|- ( ps -> x e. M ) |
5 |
|
modelaxreplem2.5 |
|- F/ w ps |
6 |
|
modelaxreplem2.6 |
|- F/ z ps |
7 |
|
modelaxreplem2.7 |
|- F/_ z F |
8 |
|
modelaxreplem2.8 |
|- F = { <. w , z >. | ( w e. x /\ ( z e. M /\ A. y ph ) ) } |
9 |
|
modelaxreplem2.9 |
|- ( ps -> ( w e. M -> E. y e. M A. z e. M ( A. y ph -> z = y ) ) ) |
10 |
1
|
sseld |
|- ( ps -> ( w e. x -> w e. M ) ) |
11 |
|
nfa1 |
|- F/ y A. y ph |
12 |
11
|
rmo2i |
|- ( E. y e. M A. z e. M ( A. y ph -> z = y ) -> E* z e. M A. y ph ) |
13 |
|
df-rmo |
|- ( E* z e. M A. y ph <-> E* z ( z e. M /\ A. y ph ) ) |
14 |
12 13
|
sylib |
|- ( E. y e. M A. z e. M ( A. y ph -> z = y ) -> E* z ( z e. M /\ A. y ph ) ) |
15 |
9 14
|
syl6 |
|- ( ps -> ( w e. M -> E* z ( z e. M /\ A. y ph ) ) ) |
16 |
10 15
|
syld |
|- ( ps -> ( w e. x -> E* z ( z e. M /\ A. y ph ) ) ) |
17 |
|
moanimv |
|- ( E* z ( w e. x /\ ( z e. M /\ A. y ph ) ) <-> ( w e. x -> E* z ( z e. M /\ A. y ph ) ) ) |
18 |
16 17
|
sylibr |
|- ( ps -> E* z ( w e. x /\ ( z e. M /\ A. y ph ) ) ) |
19 |
5 18
|
alrimi |
|- ( ps -> A. w E* z ( w e. x /\ ( z e. M /\ A. y ph ) ) ) |
20 |
8
|
funeqi |
|- ( Fun F <-> Fun { <. w , z >. | ( w e. x /\ ( z e. M /\ A. y ph ) ) } ) |
21 |
|
funopab |
|- ( Fun { <. w , z >. | ( w e. x /\ ( z e. M /\ A. y ph ) ) } <-> A. w E* z ( w e. x /\ ( z e. M /\ A. y ph ) ) ) |
22 |
20 21
|
bitri |
|- ( Fun F <-> A. w E* z ( w e. x /\ ( z e. M /\ A. y ph ) ) ) |
23 |
19 22
|
sylibr |
|- ( ps -> Fun F ) |
24 |
8
|
dmeqi |
|- dom F = dom { <. w , z >. | ( w e. x /\ ( z e. M /\ A. y ph ) ) } |
25 |
|
dmopabss |
|- dom { <. w , z >. | ( w e. x /\ ( z e. M /\ A. y ph ) ) } C_ x |
26 |
24 25
|
eqsstri |
|- dom F C_ x |
27 |
1 2 3 4 26
|
modelaxreplem1 |
|- ( ps -> dom F e. M ) |
28 |
|
an12 |
|- ( ( w e. x /\ ( z e. M /\ A. y ph ) ) <-> ( z e. M /\ ( w e. x /\ A. y ph ) ) ) |
29 |
28
|
opabbii |
|- { <. w , z >. | ( w e. x /\ ( z e. M /\ A. y ph ) ) } = { <. w , z >. | ( z e. M /\ ( w e. x /\ A. y ph ) ) } |
30 |
8 29
|
eqtri |
|- F = { <. w , z >. | ( z e. M /\ ( w e. x /\ A. y ph ) ) } |
31 |
30
|
rneqi |
|- ran F = ran { <. w , z >. | ( z e. M /\ ( w e. x /\ A. y ph ) ) } |
32 |
|
rnopabss |
|- ran { <. w , z >. | ( z e. M /\ ( w e. x /\ A. y ph ) ) } C_ M |
33 |
31 32
|
eqsstri |
|- ran F C_ M |
34 |
33
|
a1i |
|- ( ps -> ran F C_ M ) |
35 |
|
funex |
|- ( ( Fun F /\ dom F e. M ) -> F e. _V ) |
36 |
23 27 35
|
syl2anc |
|- ( ps -> F e. _V ) |
37 |
|
funeq |
|- ( f = F -> ( Fun f <-> Fun F ) ) |
38 |
|
dmeq |
|- ( f = F -> dom f = dom F ) |
39 |
38
|
eleq1d |
|- ( f = F -> ( dom f e. M <-> dom F e. M ) ) |
40 |
|
rneq |
|- ( f = F -> ran f = ran F ) |
41 |
40
|
sseq1d |
|- ( f = F -> ( ran f C_ M <-> ran F C_ M ) ) |
42 |
37 39 41
|
3anbi123d |
|- ( f = F -> ( ( Fun f /\ dom f e. M /\ ran f C_ M ) <-> ( Fun F /\ dom F e. M /\ ran F C_ M ) ) ) |
43 |
40
|
eleq1d |
|- ( f = F -> ( ran f e. M <-> ran F e. M ) ) |
44 |
42 43
|
imbi12d |
|- ( f = F -> ( ( ( Fun f /\ dom f e. M /\ ran f C_ M ) -> ran f e. M ) <-> ( ( Fun F /\ dom F e. M /\ ran F C_ M ) -> ran F e. M ) ) ) |
45 |
44
|
spcgv |
|- ( F e. _V -> ( A. f ( ( Fun f /\ dom f e. M /\ ran f C_ M ) -> ran f e. M ) -> ( ( Fun F /\ dom F e. M /\ ran F C_ M ) -> ran F e. M ) ) ) |
46 |
36 2 45
|
sylc |
|- ( ps -> ( ( Fun F /\ dom F e. M /\ ran F C_ M ) -> ran F e. M ) ) |
47 |
23 27 34 46
|
mp3and |
|- ( ps -> ran F e. M ) |