Step |
Hyp |
Ref |
Expression |
1 |
|
modelaxreplem.1 |
⊢ ( 𝜓 → 𝑥 ⊆ 𝑀 ) |
2 |
|
modelaxreplem.2 |
⊢ ( 𝜓 → ∀ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀 ) → ran 𝑓 ∈ 𝑀 ) ) |
3 |
|
modelaxreplem.3 |
⊢ ( 𝜓 → ∅ ∈ 𝑀 ) |
4 |
|
modelaxreplem.4 |
⊢ ( 𝜓 → 𝑥 ∈ 𝑀 ) |
5 |
|
modelaxreplem2.5 |
⊢ Ⅎ 𝑤 𝜓 |
6 |
|
modelaxreplem2.6 |
⊢ Ⅎ 𝑧 𝜓 |
7 |
|
modelaxreplem2.7 |
⊢ Ⅎ 𝑧 𝐹 |
8 |
|
modelaxreplem2.8 |
⊢ 𝐹 = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } |
9 |
|
modelaxreplem2.9 |
⊢ ( 𝜓 → ( 𝑤 ∈ 𝑀 → ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ) ) |
10 |
1
|
sseld |
⊢ ( 𝜓 → ( 𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑀 ) ) |
11 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 𝜑 |
12 |
11
|
rmo2i |
⊢ ( ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∃* 𝑧 ∈ 𝑀 ∀ 𝑦 𝜑 ) |
13 |
|
df-rmo |
⊢ ( ∃* 𝑧 ∈ 𝑀 ∀ 𝑦 𝜑 ↔ ∃* 𝑧 ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) |
14 |
12 13
|
sylib |
⊢ ( ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∃* 𝑧 ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) |
15 |
9 14
|
syl6 |
⊢ ( 𝜓 → ( 𝑤 ∈ 𝑀 → ∃* 𝑧 ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ) |
16 |
10 15
|
syld |
⊢ ( 𝜓 → ( 𝑤 ∈ 𝑥 → ∃* 𝑧 ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ) |
17 |
|
moanimv |
⊢ ( ∃* 𝑧 ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑤 ∈ 𝑥 → ∃* 𝑧 ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ) |
18 |
16 17
|
sylibr |
⊢ ( 𝜓 → ∃* 𝑧 ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ) |
19 |
5 18
|
alrimi |
⊢ ( 𝜓 → ∀ 𝑤 ∃* 𝑧 ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ) |
20 |
8
|
funeqi |
⊢ ( Fun 𝐹 ↔ Fun { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } ) |
21 |
|
funopab |
⊢ ( Fun { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } ↔ ∀ 𝑤 ∃* 𝑧 ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ) |
22 |
20 21
|
bitri |
⊢ ( Fun 𝐹 ↔ ∀ 𝑤 ∃* 𝑧 ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ) |
23 |
19 22
|
sylibr |
⊢ ( 𝜓 → Fun 𝐹 ) |
24 |
8
|
dmeqi |
⊢ dom 𝐹 = dom { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } |
25 |
|
dmopabss |
⊢ dom { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } ⊆ 𝑥 |
26 |
24 25
|
eqsstri |
⊢ dom 𝐹 ⊆ 𝑥 |
27 |
1 2 3 4 26
|
modelaxreplem1 |
⊢ ( 𝜓 → dom 𝐹 ∈ 𝑀 ) |
28 |
|
an12 |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
29 |
28
|
opabbii |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) } |
30 |
8 29
|
eqtri |
⊢ 𝐹 = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) } |
31 |
30
|
rneqi |
⊢ ran 𝐹 = ran { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) } |
32 |
|
rnopabss |
⊢ ran { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) } ⊆ 𝑀 |
33 |
31 32
|
eqsstri |
⊢ ran 𝐹 ⊆ 𝑀 |
34 |
33
|
a1i |
⊢ ( 𝜓 → ran 𝐹 ⊆ 𝑀 ) |
35 |
|
funex |
⊢ ( ( Fun 𝐹 ∧ dom 𝐹 ∈ 𝑀 ) → 𝐹 ∈ V ) |
36 |
23 27 35
|
syl2anc |
⊢ ( 𝜓 → 𝐹 ∈ V ) |
37 |
|
funeq |
⊢ ( 𝑓 = 𝐹 → ( Fun 𝑓 ↔ Fun 𝐹 ) ) |
38 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
39 |
38
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( dom 𝑓 ∈ 𝑀 ↔ dom 𝐹 ∈ 𝑀 ) ) |
40 |
|
rneq |
⊢ ( 𝑓 = 𝐹 → ran 𝑓 = ran 𝐹 ) |
41 |
40
|
sseq1d |
⊢ ( 𝑓 = 𝐹 → ( ran 𝑓 ⊆ 𝑀 ↔ ran 𝐹 ⊆ 𝑀 ) ) |
42 |
37 39 41
|
3anbi123d |
⊢ ( 𝑓 = 𝐹 → ( ( Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀 ) ↔ ( Fun 𝐹 ∧ dom 𝐹 ∈ 𝑀 ∧ ran 𝐹 ⊆ 𝑀 ) ) ) |
43 |
40
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ran 𝑓 ∈ 𝑀 ↔ ran 𝐹 ∈ 𝑀 ) ) |
44 |
42 43
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀 ) → ran 𝑓 ∈ 𝑀 ) ↔ ( ( Fun 𝐹 ∧ dom 𝐹 ∈ 𝑀 ∧ ran 𝐹 ⊆ 𝑀 ) → ran 𝐹 ∈ 𝑀 ) ) ) |
45 |
44
|
spcgv |
⊢ ( 𝐹 ∈ V → ( ∀ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀 ) → ran 𝑓 ∈ 𝑀 ) → ( ( Fun 𝐹 ∧ dom 𝐹 ∈ 𝑀 ∧ ran 𝐹 ⊆ 𝑀 ) → ran 𝐹 ∈ 𝑀 ) ) ) |
46 |
36 2 45
|
sylc |
⊢ ( 𝜓 → ( ( Fun 𝐹 ∧ dom 𝐹 ∈ 𝑀 ∧ ran 𝐹 ⊆ 𝑀 ) → ran 𝐹 ∈ 𝑀 ) ) |
47 |
23 27 34 46
|
mp3and |
⊢ ( 𝜓 → ran 𝐹 ∈ 𝑀 ) |