Metamath Proof Explorer


Theorem modelaxreplem3

Description: Lemma for modelaxrep . We show that the consequent of Replacement is satisfied with ran F as the value of y . (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypotheses modelaxreplem.1 ( 𝜓𝑥𝑀 )
modelaxreplem.2 ( 𝜓 → ∀ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀 ) → ran 𝑓𝑀 ) )
modelaxreplem.3 ( 𝜓 → ∅ ∈ 𝑀 )
modelaxreplem.4 ( 𝜓𝑥𝑀 )
modelaxreplem2.5 𝑤 𝜓
modelaxreplem2.6 𝑧 𝜓
modelaxreplem2.7 𝑧 𝐹
modelaxreplem2.8 𝐹 = { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑤𝑥 ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) }
modelaxreplem2.9 ( 𝜓 → ( 𝑤𝑀 → ∃ 𝑦𝑀𝑧𝑀 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) ) )
Assertion modelaxreplem3 ( 𝜓 → ∃ 𝑦𝑀𝑧𝑀 ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 modelaxreplem.1 ( 𝜓𝑥𝑀 )
2 modelaxreplem.2 ( 𝜓 → ∀ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀 ) → ran 𝑓𝑀 ) )
3 modelaxreplem.3 ( 𝜓 → ∅ ∈ 𝑀 )
4 modelaxreplem.4 ( 𝜓𝑥𝑀 )
5 modelaxreplem2.5 𝑤 𝜓
6 modelaxreplem2.6 𝑧 𝜓
7 modelaxreplem2.7 𝑧 𝐹
8 modelaxreplem2.8 𝐹 = { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑤𝑥 ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) }
9 modelaxreplem2.9 ( 𝜓 → ( 𝑤𝑀 → ∃ 𝑦𝑀𝑧𝑀 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) ) )
10 1 2 3 4 5 6 7 8 9 modelaxreplem2 ( 𝜓 → ran 𝐹𝑀 )
11 1 sseld ( 𝜓 → ( 𝑤𝑥𝑤𝑀 ) )
12 11 pm4.71rd ( 𝜓 → ( 𝑤𝑥 ↔ ( 𝑤𝑀𝑤𝑥 ) ) )
13 12 anbi1d ( 𝜓 → ( ( 𝑤𝑥 ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( ( 𝑤𝑀𝑤𝑥 ) ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) ) )
14 an12 ( ( ( 𝑤𝑀𝑤𝑥 ) ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧𝑀 ∧ ( ( 𝑤𝑀𝑤𝑥 ) ∧ ∀ 𝑦 𝜑 ) ) )
15 anass ( ( ( 𝑤𝑀𝑤𝑥 ) ∧ ∀ 𝑦 𝜑 ) ↔ ( 𝑤𝑀 ∧ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
16 15 anbi2i ( ( 𝑧𝑀 ∧ ( ( 𝑤𝑀𝑤𝑥 ) ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧𝑀 ∧ ( 𝑤𝑀 ∧ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
17 14 16 bitri ( ( ( 𝑤𝑀𝑤𝑥 ) ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧𝑀 ∧ ( 𝑤𝑀 ∧ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
18 13 17 bitrdi ( 𝜓 → ( ( 𝑤𝑥 ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧𝑀 ∧ ( 𝑤𝑀 ∧ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) )
19 5 18 exbid ( 𝜓 → ( ∃ 𝑤 ( 𝑤𝑥 ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∃ 𝑤 ( 𝑧𝑀 ∧ ( 𝑤𝑀 ∧ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) )
20 8 rneqi ran 𝐹 = ran { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑤𝑥 ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) }
21 rnopab ran { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑤𝑥 ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) } = { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) }
22 20 21 eqtri ran 𝐹 = { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) }
23 22 eqabri ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ( 𝑧𝑀 ∧ ∀ 𝑦 𝜑 ) ) )
24 df-rex ( ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤𝑀 ∧ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
25 24 anbi2i ( ( 𝑧𝑀 ∧ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧𝑀 ∧ ∃ 𝑤 ( 𝑤𝑀 ∧ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
26 19.42v ( ∃ 𝑤 ( 𝑧𝑀 ∧ ( 𝑤𝑀 ∧ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ( 𝑧𝑀 ∧ ∃ 𝑤 ( 𝑤𝑀 ∧ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
27 25 26 bitr4i ( ( 𝑧𝑀 ∧ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∃ 𝑤 ( 𝑧𝑀 ∧ ( 𝑤𝑀 ∧ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
28 19 23 27 3bitr4g ( 𝜓 → ( 𝑧 ∈ ran 𝐹 ↔ ( 𝑧𝑀 ∧ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
29 28 baibd ( ( 𝜓𝑧𝑀 ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
30 6 29 ralrimia ( 𝜓 → ∀ 𝑧𝑀 ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
31 7 nfrn 𝑧 ran 𝐹
32 sbcralt ( ( ran 𝐹𝑀 𝑧 ran 𝐹 ) → ( [ ran 𝐹 / 𝑦 ]𝑧𝑀 ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧𝑀 [ ran 𝐹 / 𝑦 ] ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
33 31 32 mpan2 ( ran 𝐹𝑀 → ( [ ran 𝐹 / 𝑦 ]𝑧𝑀 ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧𝑀 [ ran 𝐹 / 𝑦 ] ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
34 31 nfel1 𝑧 ran 𝐹𝑀
35 sbcbig ( ran 𝐹𝑀 → ( [ ran 𝐹 / 𝑦 ] ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( [ ran 𝐹 / 𝑦 ] 𝑧𝑦[ ran 𝐹 / 𝑦 ]𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
36 sbcel2gv ( ran 𝐹𝑀 → ( [ ran 𝐹 / 𝑦 ] 𝑧𝑦𝑧 ∈ ran 𝐹 ) )
37 nfcv 𝑦 𝑀
38 nfv 𝑦 𝑤𝑥
39 nfa1 𝑦𝑦 𝜑
40 38 39 nfan 𝑦 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 )
41 37 40 nfrexw 𝑦𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 )
42 41 sbcgf ( ran 𝐹𝑀 → ( [ ran 𝐹 / 𝑦 ]𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
43 36 42 bibi12d ( ran 𝐹𝑀 → ( ( [ ran 𝐹 / 𝑦 ] 𝑧𝑦[ ran 𝐹 / 𝑦 ]𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
44 35 43 bitrd ( ran 𝐹𝑀 → ( [ ran 𝐹 / 𝑦 ] ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
45 34 44 ralbid ( ran 𝐹𝑀 → ( ∀ 𝑧𝑀 [ ran 𝐹 / 𝑦 ] ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧𝑀 ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
46 33 45 bitrd ( ran 𝐹𝑀 → ( [ ran 𝐹 / 𝑦 ]𝑧𝑀 ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧𝑀 ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
47 10 46 syl ( 𝜓 → ( [ ran 𝐹 / 𝑦 ]𝑧𝑀 ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧𝑀 ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
48 30 47 mpbird ( 𝜓[ ran 𝐹 / 𝑦 ]𝑧𝑀 ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
49 10 48 rspesbcd ( 𝜓 → ∃ 𝑦𝑀𝑧𝑀 ( 𝑧𝑦 ↔ ∃ 𝑤𝑀 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )