Step |
Hyp |
Ref |
Expression |
1 |
|
modelaxreplem.1 |
⊢ ( 𝜓 → 𝑥 ⊆ 𝑀 ) |
2 |
|
modelaxreplem.2 |
⊢ ( 𝜓 → ∀ 𝑓 ( ( Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀 ) → ran 𝑓 ∈ 𝑀 ) ) |
3 |
|
modelaxreplem.3 |
⊢ ( 𝜓 → ∅ ∈ 𝑀 ) |
4 |
|
modelaxreplem.4 |
⊢ ( 𝜓 → 𝑥 ∈ 𝑀 ) |
5 |
|
modelaxreplem2.5 |
⊢ Ⅎ 𝑤 𝜓 |
6 |
|
modelaxreplem2.6 |
⊢ Ⅎ 𝑧 𝜓 |
7 |
|
modelaxreplem2.7 |
⊢ Ⅎ 𝑧 𝐹 |
8 |
|
modelaxreplem2.8 |
⊢ 𝐹 = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } |
9 |
|
modelaxreplem2.9 |
⊢ ( 𝜓 → ( 𝑤 ∈ 𝑀 → ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ) ) |
10 |
1 2 3 4 5 6 7 8 9
|
modelaxreplem2 |
⊢ ( 𝜓 → ran 𝐹 ∈ 𝑀 ) |
11 |
1
|
sseld |
⊢ ( 𝜓 → ( 𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑀 ) ) |
12 |
11
|
pm4.71rd |
⊢ ( 𝜓 → ( 𝑤 ∈ 𝑥 ↔ ( 𝑤 ∈ 𝑀 ∧ 𝑤 ∈ 𝑥 ) ) ) |
13 |
12
|
anbi1d |
⊢ ( 𝜓 → ( ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( ( 𝑤 ∈ 𝑀 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
14 |
|
an12 |
⊢ ( ( ( 𝑤 ∈ 𝑀 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑀 ∧ ( ( 𝑤 ∈ 𝑀 ∧ 𝑤 ∈ 𝑥 ) ∧ ∀ 𝑦 𝜑 ) ) ) |
15 |
|
anass |
⊢ ( ( ( 𝑤 ∈ 𝑀 ∧ 𝑤 ∈ 𝑥 ) ∧ ∀ 𝑦 𝜑 ) ↔ ( 𝑤 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
16 |
15
|
anbi2i |
⊢ ( ( 𝑧 ∈ 𝑀 ∧ ( ( 𝑤 ∈ 𝑀 ∧ 𝑤 ∈ 𝑥 ) ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
17 |
14 16
|
bitri |
⊢ ( ( ( 𝑤 ∈ 𝑀 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
18 |
13 17
|
bitrdi |
⊢ ( 𝜓 → ( ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
19 |
5 18
|
exbid |
⊢ ( 𝜓 → ( ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
20 |
8
|
rneqi |
⊢ ran 𝐹 = ran { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } |
21 |
|
rnopab |
⊢ ran { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } = { 𝑧 ∣ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } |
22 |
20 21
|
eqtri |
⊢ ran 𝐹 = { 𝑧 ∣ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) } |
23 |
22
|
eqabri |
⊢ ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑀 ∧ ∀ 𝑦 𝜑 ) ) ) |
24 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
25 |
24
|
anbi2i |
⊢ ( ( 𝑧 ∈ 𝑀 ∧ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑀 ∧ ∃ 𝑤 ( 𝑤 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
26 |
|
19.42v |
⊢ ( ∃ 𝑤 ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ( 𝑧 ∈ 𝑀 ∧ ∃ 𝑤 ( 𝑤 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
27 |
25 26
|
bitr4i |
⊢ ( ( 𝑧 ∈ 𝑀 ∧ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑀 ∧ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
28 |
19 23 27
|
3bitr4g |
⊢ ( 𝜓 → ( 𝑧 ∈ ran 𝐹 ↔ ( 𝑧 ∈ 𝑀 ∧ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
29 |
28
|
baibd |
⊢ ( ( 𝜓 ∧ 𝑧 ∈ 𝑀 ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
30 |
6 29
|
ralrimia |
⊢ ( 𝜓 → ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
31 |
7
|
nfrn |
⊢ Ⅎ 𝑧 ran 𝐹 |
32 |
|
sbcralt |
⊢ ( ( ran 𝐹 ∈ 𝑀 ∧ Ⅎ 𝑧 ran 𝐹 ) → ( [ ran 𝐹 / 𝑦 ] ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ∈ 𝑀 [ ran 𝐹 / 𝑦 ] ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
33 |
31 32
|
mpan2 |
⊢ ( ran 𝐹 ∈ 𝑀 → ( [ ran 𝐹 / 𝑦 ] ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ∈ 𝑀 [ ran 𝐹 / 𝑦 ] ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
34 |
31
|
nfel1 |
⊢ Ⅎ 𝑧 ran 𝐹 ∈ 𝑀 |
35 |
|
sbcbig |
⊢ ( ran 𝐹 ∈ 𝑀 → ( [ ran 𝐹 / 𝑦 ] ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( [ ran 𝐹 / 𝑦 ] 𝑧 ∈ 𝑦 ↔ [ ran 𝐹 / 𝑦 ] ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
36 |
|
sbcel2gv |
⊢ ( ran 𝐹 ∈ 𝑀 → ( [ ran 𝐹 / 𝑦 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ran 𝐹 ) ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑀 |
38 |
|
nfv |
⊢ Ⅎ 𝑦 𝑤 ∈ 𝑥 |
39 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 𝜑 |
40 |
38 39
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) |
41 |
37 40
|
nfrexw |
⊢ Ⅎ 𝑦 ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) |
42 |
41
|
sbcgf |
⊢ ( ran 𝐹 ∈ 𝑀 → ( [ ran 𝐹 / 𝑦 ] ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
43 |
36 42
|
bibi12d |
⊢ ( ran 𝐹 ∈ 𝑀 → ( ( [ ran 𝐹 / 𝑦 ] 𝑧 ∈ 𝑦 ↔ [ ran 𝐹 / 𝑦 ] ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
44 |
35 43
|
bitrd |
⊢ ( ran 𝐹 ∈ 𝑀 → ( [ ran 𝐹 / 𝑦 ] ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
45 |
34 44
|
ralbid |
⊢ ( ran 𝐹 ∈ 𝑀 → ( ∀ 𝑧 ∈ 𝑀 [ ran 𝐹 / 𝑦 ] ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
46 |
33 45
|
bitrd |
⊢ ( ran 𝐹 ∈ 𝑀 → ( [ ran 𝐹 / 𝑦 ] ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
47 |
10 46
|
syl |
⊢ ( 𝜓 → ( [ ran 𝐹 / 𝑦 ] ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
48 |
30 47
|
mpbird |
⊢ ( 𝜓 → [ ran 𝐹 / 𝑦 ] ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
49 |
10 48
|
rspesbcd |
⊢ ( 𝜓 → ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |