Metamath Proof Explorer


Theorem modelaxreplem2

Description: Lemma for modelaxrep . We define a class F and show that the antecedent of Replacement implies that F is a function. We use Replacement (in the form of funex ) to show that F exists. Then we show that, under our hypotheses, the range of F is a member of M . (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypotheses modelaxreplem.1 ψ x M
modelaxreplem.2 ψ f Fun f dom f M ran f M ran f M
modelaxreplem.3 ψ M
modelaxreplem.4 ψ x M
modelaxreplem2.5 w ψ
modelaxreplem2.6 z ψ
modelaxreplem2.7 _ z F
modelaxreplem2.8 F = w z | w x z M y φ
modelaxreplem2.9 ψ w M y M z M y φ z = y
Assertion modelaxreplem2 ψ ran F M

Proof

Step Hyp Ref Expression
1 modelaxreplem.1 ψ x M
2 modelaxreplem.2 ψ f Fun f dom f M ran f M ran f M
3 modelaxreplem.3 ψ M
4 modelaxreplem.4 ψ x M
5 modelaxreplem2.5 w ψ
6 modelaxreplem2.6 z ψ
7 modelaxreplem2.7 _ z F
8 modelaxreplem2.8 F = w z | w x z M y φ
9 modelaxreplem2.9 ψ w M y M z M y φ z = y
10 1 sseld ψ w x w M
11 nfa1 y y φ
12 11 rmo2i y M z M y φ z = y * z M y φ
13 df-rmo * z M y φ * z z M y φ
14 12 13 sylib y M z M y φ z = y * z z M y φ
15 9 14 syl6 ψ w M * z z M y φ
16 10 15 syld ψ w x * z z M y φ
17 moanimv * z w x z M y φ w x * z z M y φ
18 16 17 sylibr ψ * z w x z M y φ
19 5 18 alrimi ψ w * z w x z M y φ
20 8 funeqi Fun F Fun w z | w x z M y φ
21 funopab Fun w z | w x z M y φ w * z w x z M y φ
22 20 21 bitri Fun F w * z w x z M y φ
23 19 22 sylibr ψ Fun F
24 8 dmeqi dom F = dom w z | w x z M y φ
25 dmopabss dom w z | w x z M y φ x
26 24 25 eqsstri dom F x
27 1 2 3 4 26 modelaxreplem1 ψ dom F M
28 an12 w x z M y φ z M w x y φ
29 28 opabbii w z | w x z M y φ = w z | z M w x y φ
30 8 29 eqtri F = w z | z M w x y φ
31 30 rneqi ran F = ran w z | z M w x y φ
32 rnopabss ran w z | z M w x y φ M
33 31 32 eqsstri ran F M
34 33 a1i ψ ran F M
35 funex Fun F dom F M F V
36 23 27 35 syl2anc ψ F V
37 funeq f = F Fun f Fun F
38 dmeq f = F dom f = dom F
39 38 eleq1d f = F dom f M dom F M
40 rneq f = F ran f = ran F
41 40 sseq1d f = F ran f M ran F M
42 37 39 41 3anbi123d f = F Fun f dom f M ran f M Fun F dom F M ran F M
43 40 eleq1d f = F ran f M ran F M
44 42 43 imbi12d f = F Fun f dom f M ran f M ran f M Fun F dom F M ran F M ran F M
45 44 spcgv F V f Fun f dom f M ran f M ran f M Fun F dom F M ran F M ran F M
46 36 2 45 sylc ψ Fun F dom F M ran F M ran F M
47 23 27 34 46 mp3and ψ ran F M