| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ) |
| 2 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑦 ∈ ∪ 𝐴 ) |
| 3 |
1 2
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ 𝑦 ∈ ∪ 𝐴 ) |
| 4 |
|
eluni |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) |
| 5 |
4
|
biimpi |
⊢ ( 𝑦 ∈ ∪ 𝐴 → ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) |
| 6 |
3 5
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ 𝑦 ) |
| 8 |
1 7
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ 𝑧 ∈ 𝑦 ) |
| 9 |
|
idn3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑦 ∈ 𝑞 ) |
| 11 |
9 10
|
e3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ 𝑦 ∈ 𝑞 ) |
| 12 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) |
| 13 |
9 12
|
e3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ 𝑞 ∈ 𝐴 ) |
| 14 |
|
idn1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ) |
| 15 |
|
rspsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) |
| 16 |
15
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( 𝑞 ∈ 𝐴 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) |
| 17 |
14 13 16
|
e13 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ [ 𝑞 / 𝑥 ] Tr 𝑥 ) |
| 18 |
|
trsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 ↔ Tr 𝑞 ) ) |
| 19 |
18
|
biimpd |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 → Tr 𝑞 ) ) |
| 20 |
13 17 19
|
e33 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ Tr 𝑞 ) |
| 21 |
|
trel |
⊢ ( Tr 𝑞 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞 ) → 𝑧 ∈ 𝑞 ) ) |
| 22 |
21
|
expdcom |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑞 → ( Tr 𝑞 → 𝑧 ∈ 𝑞 ) ) ) |
| 23 |
8 11 20 22
|
e233 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ 𝑧 ∈ 𝑞 ) |
| 24 |
|
elunii |
⊢ ( ( 𝑧 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) |
| 25 |
24
|
ex |
⊢ ( 𝑧 ∈ 𝑞 → ( 𝑞 ∈ 𝐴 → 𝑧 ∈ ∪ 𝐴 ) ) |
| 26 |
23 13 25
|
e33 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ 𝑧 ∈ ∪ 𝐴 ) |
| 27 |
26
|
in3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 28 |
27
|
gen21 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ ∀ 𝑞 ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 29 |
|
19.23v |
⊢ ( ∀ 𝑞 ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ↔ ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 30 |
29
|
biimpi |
⊢ ( ∀ 𝑞 ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) → ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 31 |
28 30
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 32 |
|
pm2.27 |
⊢ ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → ( ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 33 |
6 31 32
|
e22 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ 𝑧 ∈ ∪ 𝐴 ) |
| 34 |
33
|
in2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 35 |
34
|
gen12 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 36 |
|
dftr2 |
⊢ ( Tr ∪ 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 37 |
36
|
biimpri |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) → Tr ∪ 𝐴 ) |
| 38 |
35 37
|
e1a |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ Tr ∪ 𝐴 ) |
| 39 |
38
|
in1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴 ) |