| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑦 ∈ ∪ 𝐴 ) |
| 2 |
1
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑦 ∈ ∪ 𝐴 ) ) |
| 3 |
|
eluni |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) |
| 4 |
2 3
|
imbitrdi |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ 𝑦 ) |
| 6 |
5
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ 𝑦 ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑦 ∈ 𝑞 ) |
| 8 |
7
|
2a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑦 ∈ 𝑞 ) ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) |
| 10 |
9
|
2a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) ) ) |
| 11 |
|
rspsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) |
| 12 |
11
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( 𝑞 ∈ 𝐴 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) |
| 13 |
10 12
|
syl6d |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) ) |
| 14 |
|
trsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 ↔ Tr 𝑞 ) ) |
| 15 |
14
|
biimpd |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 → Tr 𝑞 ) ) |
| 16 |
10 13 15
|
ee33 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → Tr 𝑞 ) ) ) |
| 17 |
|
trel |
⊢ ( Tr 𝑞 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞 ) → 𝑧 ∈ 𝑞 ) ) |
| 18 |
17
|
expdcom |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑞 → ( Tr 𝑞 → 𝑧 ∈ 𝑞 ) ) ) |
| 19 |
6 8 16 18
|
ee233 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ 𝑞 ) ) ) |
| 20 |
|
elunii |
⊢ ( ( 𝑧 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) |
| 21 |
20
|
ex |
⊢ ( 𝑧 ∈ 𝑞 → ( 𝑞 ∈ 𝐴 → 𝑧 ∈ ∪ 𝐴 ) ) |
| 22 |
19 10 21
|
ee33 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) ) |
| 23 |
22
|
alrimdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ∀ 𝑞 ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) ) |
| 24 |
|
19.23v |
⊢ ( ∀ 𝑞 ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ↔ ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 25 |
23 24
|
imbitrdi |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) ) |
| 26 |
4 25
|
mpdd |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 27 |
26
|
alrimivv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 28 |
|
dftr2 |
⊢ ( Tr ∪ 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
| 29 |
27 28
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴 ) |