Metamath Proof Explorer


Theorem ttukeyg

Description: The Teichmüller-Tukey Lemma ttukey stated with the "choice" as an antecedent (the hypothesis U. A e. dom card says that U. A is well-orderable). (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion ttukeyg ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧𝐴 )
2 ttukey2g ( ( 𝐴 ∈ dom card ∧ 𝑧𝐴 ∧ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥𝐴 ( 𝑧𝑥 ∧ ∀ 𝑦𝐴 ¬ 𝑥𝑦 ) )
3 simpr ( ( 𝑧𝑥 ∧ ∀ 𝑦𝐴 ¬ 𝑥𝑦 ) → ∀ 𝑦𝐴 ¬ 𝑥𝑦 )
4 3 reximi ( ∃ 𝑥𝐴 ( 𝑧𝑥 ∧ ∀ 𝑦𝐴 ¬ 𝑥𝑦 ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )
5 2 4 syl ( ( 𝐴 ∈ dom card ∧ 𝑧𝐴 ∧ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )
6 5 3exp ( 𝐴 ∈ dom card → ( 𝑧𝐴 → ( ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ) ) )
7 6 exlimdv ( 𝐴 ∈ dom card → ( ∃ 𝑧 𝑧𝐴 → ( ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ) ) )
8 1 7 syl5bi ( 𝐴 ∈ dom card → ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ) ) )
9 8 3imp ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )