Metamath Proof Explorer


Theorem txprel

Description: A tail Cartesian product is a relationship. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion txprel Rel ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 txpss3v ( 𝐴𝐵 ) ⊆ ( V × ( V × V ) )
2 xpss ( V × ( V × V ) ) ⊆ ( V × V )
3 1 2 sstri ( 𝐴𝐵 ) ⊆ ( V × V )
4 df-rel ( Rel ( 𝐴𝐵 ) ↔ ( 𝐴𝐵 ) ⊆ ( V × V ) )
5 3 4 mpbir Rel ( 𝐴𝐵 )