Metamath Proof Explorer


Theorem tz7.44lem1

Description: G is a function. Lemma for tz7.44-1 , tz7.44-2 , and tz7.44-3 . (Contributed by NM, 23-Apr-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypothesis tz7.44lem1.1 𝐺 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥𝑦 = ran 𝑥 ) ) }
Assertion tz7.44lem1 Fun 𝐺

Proof

Step Hyp Ref Expression
1 tz7.44lem1.1 𝐺 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥𝑦 = ran 𝑥 ) ) }
2 funopab ( Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥𝑦 = ran 𝑥 ) ) } ↔ ∀ 𝑥 ∃* 𝑦 ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥𝑦 = ran 𝑥 ) ) )
3 fvex ( 𝐻 ‘ ( 𝑥 dom 𝑥 ) ) ∈ V
4 vex 𝑥 ∈ V
5 rnexg ( 𝑥 ∈ V → ran 𝑥 ∈ V )
6 uniexg ( ran 𝑥 ∈ V → ran 𝑥 ∈ V )
7 4 5 6 mp2b ran 𝑥 ∈ V
8 nlim0 ¬ Lim ∅
9 dm0 dom ∅ = ∅
10 limeq ( dom ∅ = ∅ → ( Lim dom ∅ ↔ Lim ∅ ) )
11 9 10 ax-mp ( Lim dom ∅ ↔ Lim ∅ )
12 8 11 mtbir ¬ Lim dom ∅
13 dmeq ( 𝑥 = ∅ → dom 𝑥 = dom ∅ )
14 limeq ( dom 𝑥 = dom ∅ → ( Lim dom 𝑥 ↔ Lim dom ∅ ) )
15 13 14 syl ( 𝑥 = ∅ → ( Lim dom 𝑥 ↔ Lim dom ∅ ) )
16 15 biimpa ( ( 𝑥 = ∅ ∧ Lim dom 𝑥 ) → Lim dom ∅ )
17 12 16 mto ¬ ( 𝑥 = ∅ ∧ Lim dom 𝑥 )
18 3 7 17 moeq3 ∃* 𝑦 ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥𝑦 = ran 𝑥 ) )
19 2 18 mpgbir Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥𝑦 = ran 𝑥 ) ) }
20 1 funeqi ( Fun 𝐺 ↔ Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥𝑦 = ran 𝑥 ) ) } )
21 19 20 mpbir Fun 𝐺