| Step | Hyp | Ref | Expression | 
						
							| 1 |  | moeq3.1 | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | moeq3.2 | ⊢ 𝐶  ∈  V | 
						
							| 3 |  | moeq3.3 | ⊢ ¬  ( 𝜑  ∧  𝜓 ) | 
						
							| 4 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝐴 ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝜑  ∧  𝑥  =  𝑦 )  ↔  ( 𝜑  ∧  𝑥  =  𝐴 ) ) ) | 
						
							| 6 |  | biidd | ⊢ ( 𝑦  =  𝐴  →  ( ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ↔  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 ) ) ) | 
						
							| 7 |  | biidd | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝜓  ∧  𝑥  =  𝐶 )  ↔  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 8 | 5 6 7 | 3orbi123d | ⊢ ( 𝑦  =  𝐴  →  ( ( ( 𝜑  ∧  𝑥  =  𝑦 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) )  ↔  ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) ) | 
						
							| 9 | 8 | eubidv | ⊢ ( 𝑦  =  𝐴  →  ( ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝑦 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) )  ↔  ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) ) | 
						
							| 10 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 11 | 10 1 2 3 | eueq3 | ⊢ ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝑦 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) | 
						
							| 12 | 9 11 | vtoclg | ⊢ ( 𝐴  ∈  V  →  ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 13 |  | eumo | ⊢ ( ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) )  →  ∃* 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝐴  ∈  V  →  ∃* 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 15 |  | eqvisset | ⊢ ( 𝑥  =  𝐴  →  𝐴  ∈  V ) | 
						
							| 16 |  | pm2.21 | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐴  ∈  V  →  𝑥  =  𝑦 ) ) | 
						
							| 17 | 15 16 | syl5 | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝑥  =  𝐴  →  𝑥  =  𝑦 ) ) | 
						
							| 18 | 17 | anim2d | ⊢ ( ¬  𝐴  ∈  V  →  ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( 𝜑  ∧  𝑥  =  𝑦 ) ) ) | 
						
							| 19 | 18 | orim1d | ⊢ ( ¬  𝐴  ∈  V  →  ( ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) )  →  ( ( 𝜑  ∧  𝑥  =  𝑦 )  ∨  ( ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) ) ) | 
						
							| 20 |  | 3orass | ⊢ ( ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) )  ↔  ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) ) | 
						
							| 21 |  | 3orass | ⊢ ( ( ( 𝜑  ∧  𝑥  =  𝑦 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) )  ↔  ( ( 𝜑  ∧  𝑥  =  𝑦 )  ∨  ( ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) ) | 
						
							| 22 | 19 20 21 | 3imtr4g | ⊢ ( ¬  𝐴  ∈  V  →  ( ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) )  →  ( ( 𝜑  ∧  𝑥  =  𝑦 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) ) | 
						
							| 23 | 22 | alrimiv | ⊢ ( ¬  𝐴  ∈  V  →  ∀ 𝑥 ( ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) )  →  ( ( 𝜑  ∧  𝑥  =  𝑦 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) ) | 
						
							| 24 |  | euimmo | ⊢ ( ∀ 𝑥 ( ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) )  →  ( ( 𝜑  ∧  𝑥  =  𝑦 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) )  →  ( ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝑦 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) )  →  ∃* 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) ) | 
						
							| 25 | 23 11 24 | mpisyl | ⊢ ( ¬  𝐴  ∈  V  →  ∃* 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 26 | 14 25 | pm2.61i | ⊢ ∃* 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  ( 𝜑  ∨  𝜓 )  ∧  𝑥  =  𝐵 )  ∨  ( 𝜓  ∧  𝑥  =  𝐶 ) ) |