| Step | Hyp | Ref | Expression | 
						
							| 1 |  | moeq3.1 |  |-  B e. _V | 
						
							| 2 |  | moeq3.2 |  |-  C e. _V | 
						
							| 3 |  | moeq3.3 |  |-  -. ( ph /\ ps ) | 
						
							| 4 |  | eqeq2 |  |-  ( y = A -> ( x = y <-> x = A ) ) | 
						
							| 5 | 4 | anbi2d |  |-  ( y = A -> ( ( ph /\ x = y ) <-> ( ph /\ x = A ) ) ) | 
						
							| 6 |  | biidd |  |-  ( y = A -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) | 
						
							| 7 |  | biidd |  |-  ( y = A -> ( ( ps /\ x = C ) <-> ( ps /\ x = C ) ) ) | 
						
							| 8 | 5 6 7 | 3orbi123d |  |-  ( y = A -> ( ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 9 | 8 | eubidv |  |-  ( y = A -> ( E! x ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 10 |  | vex |  |-  y e. _V | 
						
							| 11 | 10 1 2 3 | eueq3 |  |-  E! x ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) | 
						
							| 12 | 9 11 | vtoclg |  |-  ( A e. _V -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) | 
						
							| 13 |  | eumo |  |-  ( E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( A e. _V -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) | 
						
							| 15 |  | eqvisset |  |-  ( x = A -> A e. _V ) | 
						
							| 16 |  | pm2.21 |  |-  ( -. A e. _V -> ( A e. _V -> x = y ) ) | 
						
							| 17 | 15 16 | syl5 |  |-  ( -. A e. _V -> ( x = A -> x = y ) ) | 
						
							| 18 | 17 | anim2d |  |-  ( -. A e. _V -> ( ( ph /\ x = A ) -> ( ph /\ x = y ) ) ) | 
						
							| 19 | 18 | orim1d |  |-  ( -. A e. _V -> ( ( ( ph /\ x = A ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) -> ( ( ph /\ x = y ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) ) | 
						
							| 20 |  | 3orass |  |-  ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = A ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 21 |  | 3orass |  |-  ( ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = y ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 22 | 19 20 21 | 3imtr4g |  |-  ( -. A e. _V -> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 23 | 22 | alrimiv |  |-  ( -. A e. _V -> A. x ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 24 |  | euimmo |  |-  ( A. x ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) -> ( E! x ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 25 | 23 11 24 | mpisyl |  |-  ( -. A e. _V -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) | 
						
							| 26 | 14 25 | pm2.61i |  |-  E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |