| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eueq3.1 |
|- A e. _V |
| 2 |
|
eueq3.2 |
|- B e. _V |
| 3 |
|
eueq3.3 |
|- C e. _V |
| 4 |
|
eueq3.4 |
|- -. ( ph /\ ps ) |
| 5 |
1
|
eueqi |
|- E! x x = A |
| 6 |
|
ibar |
|- ( ph -> ( x = A <-> ( ph /\ x = A ) ) ) |
| 7 |
|
pm2.45 |
|- ( -. ( ph \/ ps ) -> -. ph ) |
| 8 |
4
|
imnani |
|- ( ph -> -. ps ) |
| 9 |
8
|
con2i |
|- ( ps -> -. ph ) |
| 10 |
7 9
|
jaoi |
|- ( ( -. ( ph \/ ps ) \/ ps ) -> -. ph ) |
| 11 |
10
|
con2i |
|- ( ph -> -. ( -. ( ph \/ ps ) \/ ps ) ) |
| 12 |
7
|
con2i |
|- ( ph -> -. -. ( ph \/ ps ) ) |
| 13 |
12
|
bianfd |
|- ( ph -> ( -. ( ph \/ ps ) <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) |
| 14 |
8
|
bianfd |
|- ( ph -> ( ps <-> ( ps /\ x = C ) ) ) |
| 15 |
13 14
|
orbi12d |
|- ( ph -> ( ( -. ( ph \/ ps ) \/ ps ) <-> ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 16 |
11 15
|
mtbid |
|- ( ph -> -. ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 17 |
|
biorf |
|- ( -. ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = A ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> ( ( ph /\ x = A ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) |
| 19 |
6 18
|
bitrd |
|- ( ph -> ( x = A <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) |
| 20 |
|
3orrot |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) \/ ( ph /\ x = A ) ) ) |
| 21 |
|
df-3or |
|- ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) \/ ( ph /\ x = A ) ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) |
| 22 |
20 21
|
bitri |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) |
| 23 |
19 22
|
bitr4di |
|- ( ph -> ( x = A <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 24 |
23
|
eubidv |
|- ( ph -> ( E! x x = A <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 25 |
5 24
|
mpbii |
|- ( ph -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 26 |
3
|
eueqi |
|- E! x x = C |
| 27 |
|
ibar |
|- ( ps -> ( x = C <-> ( ps /\ x = C ) ) ) |
| 28 |
8
|
adantr |
|- ( ( ph /\ x = A ) -> -. ps ) |
| 29 |
|
pm2.46 |
|- ( -. ( ph \/ ps ) -> -. ps ) |
| 30 |
29
|
adantr |
|- ( ( -. ( ph \/ ps ) /\ x = B ) -> -. ps ) |
| 31 |
28 30
|
jaoi |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) -> -. ps ) |
| 32 |
31
|
con2i |
|- ( ps -> -. ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
| 33 |
|
biorf |
|- ( -. ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) -> ( ( ps /\ x = C ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) |
| 34 |
32 33
|
syl |
|- ( ps -> ( ( ps /\ x = C ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) |
| 35 |
27 34
|
bitrd |
|- ( ps -> ( x = C <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) |
| 36 |
|
df-3or |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) |
| 37 |
35 36
|
bitr4di |
|- ( ps -> ( x = C <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 38 |
37
|
eubidv |
|- ( ps -> ( E! x x = C <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 39 |
26 38
|
mpbii |
|- ( ps -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 40 |
2
|
eueqi |
|- E! x x = B |
| 41 |
|
ibar |
|- ( -. ( ph \/ ps ) -> ( x = B <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) |
| 42 |
|
simpl |
|- ( ( ph /\ x = A ) -> ph ) |
| 43 |
|
simpl |
|- ( ( ps /\ x = C ) -> ps ) |
| 44 |
42 43
|
orim12i |
|- ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) -> ( ph \/ ps ) ) |
| 45 |
|
biorf |
|- ( -. ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) |
| 46 |
44 45
|
nsyl5 |
|- ( -. ( ph \/ ps ) -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) |
| 47 |
41 46
|
bitrd |
|- ( -. ( ph \/ ps ) -> ( x = B <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) |
| 48 |
|
3orcomb |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = A ) \/ ( ps /\ x = C ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
| 49 |
|
df-3or |
|- ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
| 50 |
48 49
|
bitri |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
| 51 |
47 50
|
bitr4di |
|- ( -. ( ph \/ ps ) -> ( x = B <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 52 |
51
|
eubidv |
|- ( -. ( ph \/ ps ) -> ( E! x x = B <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 53 |
40 52
|
mpbii |
|- ( -. ( ph \/ ps ) -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 54 |
25 39 53
|
ecase3 |
|- E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |