| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eueq3.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
eueq3.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
eueq3.3 |
⊢ 𝐶 ∈ V |
| 4 |
|
eueq3.4 |
⊢ ¬ ( 𝜑 ∧ 𝜓 ) |
| 5 |
1
|
eueqi |
⊢ ∃! 𝑥 𝑥 = 𝐴 |
| 6 |
|
ibar |
⊢ ( 𝜑 → ( 𝑥 = 𝐴 ↔ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
| 7 |
|
pm2.45 |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ 𝜑 ) |
| 8 |
4
|
imnani |
⊢ ( 𝜑 → ¬ 𝜓 ) |
| 9 |
8
|
con2i |
⊢ ( 𝜓 → ¬ 𝜑 ) |
| 10 |
7 9
|
jaoi |
⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜓 ) → ¬ 𝜑 ) |
| 11 |
10
|
con2i |
⊢ ( 𝜑 → ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜓 ) ) |
| 12 |
7
|
con2i |
⊢ ( 𝜑 → ¬ ¬ ( 𝜑 ∨ 𝜓 ) ) |
| 13 |
12
|
bianfd |
⊢ ( 𝜑 → ( ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 14 |
8
|
bianfd |
⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 15 |
13 14
|
orbi12d |
⊢ ( 𝜑 → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜓 ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 16 |
11 15
|
mtbid |
⊢ ( 𝜑 → ¬ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 17 |
|
biorf |
⊢ ( ¬ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) ) |
| 19 |
6 18
|
bitrd |
⊢ ( 𝜑 → ( 𝑥 = 𝐴 ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) ) |
| 20 |
|
3orrot |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
| 21 |
|
df-3or |
⊢ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
| 22 |
20 21
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
| 23 |
19 22
|
bitr4di |
⊢ ( 𝜑 → ( 𝑥 = 𝐴 ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 24 |
23
|
eubidv |
⊢ ( 𝜑 → ( ∃! 𝑥 𝑥 = 𝐴 ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 25 |
5 24
|
mpbii |
⊢ ( 𝜑 → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 26 |
3
|
eueqi |
⊢ ∃! 𝑥 𝑥 = 𝐶 |
| 27 |
|
ibar |
⊢ ( 𝜓 → ( 𝑥 = 𝐶 ↔ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 28 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ¬ 𝜓 ) |
| 29 |
|
pm2.46 |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ 𝜓 ) |
| 30 |
29
|
adantr |
⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) → ¬ 𝜓 ) |
| 31 |
28 30
|
jaoi |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) → ¬ 𝜓 ) |
| 32 |
31
|
con2i |
⊢ ( 𝜓 → ¬ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 33 |
|
biorf |
⊢ ( ¬ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) → ( ( 𝜓 ∧ 𝑥 = 𝐶 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜓 → ( ( 𝜓 ∧ 𝑥 = 𝐶 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 35 |
27 34
|
bitrd |
⊢ ( 𝜓 → ( 𝑥 = 𝐶 ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 36 |
|
df-3or |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 37 |
35 36
|
bitr4di |
⊢ ( 𝜓 → ( 𝑥 = 𝐶 ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 38 |
37
|
eubidv |
⊢ ( 𝜓 → ( ∃! 𝑥 𝑥 = 𝐶 ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 39 |
26 38
|
mpbii |
⊢ ( 𝜓 → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 40 |
2
|
eueqi |
⊢ ∃! 𝑥 𝑥 = 𝐵 |
| 41 |
|
ibar |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝑥 = 𝐵 ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 42 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝜑 ) |
| 43 |
|
simpl |
⊢ ( ( 𝜓 ∧ 𝑥 = 𝐶 ) → 𝜓 ) |
| 44 |
42 43
|
orim12i |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( 𝜑 ∨ 𝜓 ) ) |
| 45 |
|
biorf |
⊢ ( ¬ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) ) |
| 46 |
44 45
|
nsyl5 |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) ) |
| 47 |
41 46
|
bitrd |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝑥 = 𝐵 ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) ) |
| 48 |
|
3orcomb |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 49 |
|
df-3or |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 50 |
48 49
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 51 |
47 50
|
bitr4di |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝑥 = 𝐵 ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 52 |
51
|
eubidv |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( ∃! 𝑥 𝑥 = 𝐵 ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 53 |
40 52
|
mpbii |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 54 |
25 39 53
|
ecase3 |
⊢ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) |