Metamath Proof Explorer


Theorem moeq3

Description: "At most one" property of equality (split into 3 cases). (The first two hypotheses could be eliminated with longer proof.) (Contributed by NM, 23-Apr-1995)

Ref Expression
Hypotheses moeq3.1 BV
moeq3.2 CV
moeq3.3 ¬φψ
Assertion moeq3 *xφx=A¬φψx=Bψx=C

Proof

Step Hyp Ref Expression
1 moeq3.1 BV
2 moeq3.2 CV
3 moeq3.3 ¬φψ
4 eqeq2 y=Ax=yx=A
5 4 anbi2d y=Aφx=yφx=A
6 biidd y=A¬φψx=B¬φψx=B
7 biidd y=Aψx=Cψx=C
8 5 6 7 3orbi123d y=Aφx=y¬φψx=Bψx=Cφx=A¬φψx=Bψx=C
9 8 eubidv y=A∃!xφx=y¬φψx=Bψx=C∃!xφx=A¬φψx=Bψx=C
10 vex yV
11 10 1 2 3 eueq3 ∃!xφx=y¬φψx=Bψx=C
12 9 11 vtoclg AV∃!xφx=A¬φψx=Bψx=C
13 eumo ∃!xφx=A¬φψx=Bψx=C*xφx=A¬φψx=Bψx=C
14 12 13 syl AV*xφx=A¬φψx=Bψx=C
15 eqvisset x=AAV
16 pm2.21 ¬AVAVx=y
17 15 16 syl5 ¬AVx=Ax=y
18 17 anim2d ¬AVφx=Aφx=y
19 18 orim1d ¬AVφx=A¬φψx=Bψx=Cφx=y¬φψx=Bψx=C
20 3orass φx=A¬φψx=Bψx=Cφx=A¬φψx=Bψx=C
21 3orass φx=y¬φψx=Bψx=Cφx=y¬φψx=Bψx=C
22 19 20 21 3imtr4g ¬AVφx=A¬φψx=Bψx=Cφx=y¬φψx=Bψx=C
23 22 alrimiv ¬AVxφx=A¬φψx=Bψx=Cφx=y¬φψx=Bψx=C
24 euimmo xφx=A¬φψx=Bψx=Cφx=y¬φψx=Bψx=C∃!xφx=y¬φψx=Bψx=C*xφx=A¬φψx=Bψx=C
25 23 11 24 mpisyl ¬AV*xφx=A¬φψx=Bψx=C
26 14 25 pm2.61i *xφx=A¬φψx=Bψx=C