| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ulmf |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
| 2 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ |
| 3 |
|
ovex |
⊢ ( ℂ ↑m 𝑆 ) ∈ V |
| 4 |
|
zex |
⊢ ℤ ∈ V |
| 5 |
|
elpm2r |
⊢ ( ( ( ( ℂ ↑m 𝑆 ) ∈ V ∧ ℤ ∈ V ) ∧ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ ) ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
| 6 |
3 4 5
|
mpanl12 |
⊢ ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
| 7 |
2 6
|
mpan2 |
⊢ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
| 8 |
7
|
rexlimivw |
⊢ ( ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
| 9 |
1 8
|
syl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |