Metamath Proof Explorer


Theorem unhe1

Description: The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020)

Ref Expression
Assertion unhe1 ( ( 𝑅 hereditary 𝐴𝑆 hereditary 𝐴 ) → ( 𝑅𝑆 ) hereditary 𝐴 )

Proof

Step Hyp Ref Expression
1 df-he ( 𝑅 hereditary 𝐴 ↔ ( 𝑅𝐴 ) ⊆ 𝐴 )
2 df-he ( 𝑆 hereditary 𝐴 ↔ ( 𝑆𝐴 ) ⊆ 𝐴 )
3 imaundir ( ( 𝑅𝑆 ) “ 𝐴 ) = ( ( 𝑅𝐴 ) ∪ ( 𝑆𝐴 ) )
4 unss ( ( ( 𝑅𝐴 ) ⊆ 𝐴 ∧ ( 𝑆𝐴 ) ⊆ 𝐴 ) ↔ ( ( 𝑅𝐴 ) ∪ ( 𝑆𝐴 ) ) ⊆ 𝐴 )
5 4 biimpi ( ( ( 𝑅𝐴 ) ⊆ 𝐴 ∧ ( 𝑆𝐴 ) ⊆ 𝐴 ) → ( ( 𝑅𝐴 ) ∪ ( 𝑆𝐴 ) ) ⊆ 𝐴 )
6 3 5 eqsstrid ( ( ( 𝑅𝐴 ) ⊆ 𝐴 ∧ ( 𝑆𝐴 ) ⊆ 𝐴 ) → ( ( 𝑅𝑆 ) “ 𝐴 ) ⊆ 𝐴 )
7 1 2 6 syl2anb ( ( 𝑅 hereditary 𝐴𝑆 hereditary 𝐴 ) → ( ( 𝑅𝑆 ) “ 𝐴 ) ⊆ 𝐴 )
8 df-he ( ( 𝑅𝑆 ) hereditary 𝐴 ↔ ( ( 𝑅𝑆 ) “ 𝐴 ) ⊆ 𝐴 )
9 7 8 sylibr ( ( 𝑅 hereditary 𝐴𝑆 hereditary 𝐴 ) → ( 𝑅𝑆 ) hereditary 𝐴 )