Step |
Hyp |
Ref |
Expression |
1 |
|
df-he |
|- ( R hereditary A <-> ( R " A ) C_ A ) |
2 |
|
df-he |
|- ( S hereditary A <-> ( S " A ) C_ A ) |
3 |
|
imaundir |
|- ( ( R u. S ) " A ) = ( ( R " A ) u. ( S " A ) ) |
4 |
|
unss |
|- ( ( ( R " A ) C_ A /\ ( S " A ) C_ A ) <-> ( ( R " A ) u. ( S " A ) ) C_ A ) |
5 |
4
|
biimpi |
|- ( ( ( R " A ) C_ A /\ ( S " A ) C_ A ) -> ( ( R " A ) u. ( S " A ) ) C_ A ) |
6 |
3 5
|
eqsstrid |
|- ( ( ( R " A ) C_ A /\ ( S " A ) C_ A ) -> ( ( R u. S ) " A ) C_ A ) |
7 |
1 2 6
|
syl2anb |
|- ( ( R hereditary A /\ S hereditary A ) -> ( ( R u. S ) " A ) C_ A ) |
8 |
|
df-he |
|- ( ( R u. S ) hereditary A <-> ( ( R u. S ) " A ) C_ A ) |
9 |
7 8
|
sylibr |
|- ( ( R hereditary A /\ S hereditary A ) -> ( R u. S ) hereditary A ) |