Metamath Proof Explorer


Theorem unhe1

Description: The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020)

Ref Expression
Assertion unhe1 RhereditaryAShereditaryARShereditaryA

Proof

Step Hyp Ref Expression
1 df-he RhereditaryARAA
2 df-he ShereditaryASAA
3 imaundir RSA=RASA
4 unss RAASAARASAA
5 4 biimpi RAASAARASAA
6 3 5 eqsstrid RAASAARSAA
7 1 2 6 syl2anb RhereditaryAShereditaryARSAA
8 df-he RShereditaryARSAA
9 7 8 sylibr RhereditaryAShereditaryARShereditaryA