Step |
Hyp |
Ref |
Expression |
1 |
|
upgrtrls.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgrtrls.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
trlsfval |
⊢ ( Trails ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) } |
4 |
1 2
|
upgriswlk |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ↔ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
5 |
4
|
anbi1d |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ∧ Fun ◡ 𝑓 ) ) ) |
6 |
|
an32 |
⊢ ( ( ( 𝑓 ∈ Word dom 𝐼 ∧ ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ∧ Fun ◡ 𝑓 ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
7 |
|
3anass |
⊢ ( ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ↔ ( 𝑓 ∈ Word dom 𝐼 ∧ ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
8 |
7
|
anbi1i |
⊢ ( ( ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ∧ Fun ◡ 𝑓 ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ∧ Fun ◡ 𝑓 ) ) |
9 |
|
3anass |
⊢ ( ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
10 |
6 8 9
|
3bitr4i |
⊢ ( ( ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ∧ Fun ◡ 𝑓 ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) |
11 |
5 10
|
bitrdi |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) ↔ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
12 |
11
|
opabbidv |
⊢ ( 𝐺 ∈ UPGraph → { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) } ) |
13 |
3 12
|
eqtrid |
⊢ ( 𝐺 ∈ UPGraph → ( Trails ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( ( 𝑓 ∈ Word dom 𝐼 ∧ Fun ◡ 𝑓 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) } ) |