Step |
Hyp |
Ref |
Expression |
1 |
|
upgrtrls.v |
|- V = ( Vtx ` G ) |
2 |
|
upgrtrls.i |
|- I = ( iEdg ` G ) |
3 |
|
trlsfval |
|- ( Trails ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' f ) } |
4 |
1 2
|
upgriswlk |
|- ( G e. UPGraph -> ( f ( Walks ` G ) p <-> ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) |
5 |
4
|
anbi1d |
|- ( G e. UPGraph -> ( ( f ( Walks ` G ) p /\ Fun `' f ) <-> ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) /\ Fun `' f ) ) ) |
6 |
|
an32 |
|- ( ( ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) /\ Fun `' f ) <-> ( ( f e. Word dom I /\ Fun `' f ) /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) |
7 |
|
3anass |
|- ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) <-> ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) |
8 |
7
|
anbi1i |
|- ( ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) /\ Fun `' f ) <-> ( ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) /\ Fun `' f ) ) |
9 |
|
3anass |
|- ( ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) <-> ( ( f e. Word dom I /\ Fun `' f ) /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) |
10 |
6 8 9
|
3bitr4i |
|- ( ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) /\ Fun `' f ) <-> ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) |
11 |
5 10
|
bitrdi |
|- ( G e. UPGraph -> ( ( f ( Walks ` G ) p /\ Fun `' f ) <-> ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) |
12 |
11
|
opabbidv |
|- ( G e. UPGraph -> { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' f ) } = { <. f , p >. | ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } ) |
13 |
3 12
|
eqtrid |
|- ( G e. UPGraph -> ( Trails ` G ) = { <. f , p >. | ( ( f e. Word dom I /\ Fun `' f ) /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } ) |