| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrun.g |
⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
| 2 |
|
upgrun.h |
⊢ ( 𝜑 → 𝐻 ∈ UPGraph ) |
| 3 |
|
upgrun.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
| 4 |
|
upgrun.f |
⊢ 𝐹 = ( iEdg ‘ 𝐻 ) |
| 5 |
|
upgrun.vg |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 6 |
|
upgrun.vh |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
| 7 |
|
upgrun.i |
⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) |
| 8 |
|
opex |
⊢ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ V |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ V ) |
| 10 |
5
|
fvexi |
⊢ 𝑉 ∈ V |
| 11 |
3
|
fvexi |
⊢ 𝐸 ∈ V |
| 12 |
4
|
fvexi |
⊢ 𝐹 ∈ V |
| 13 |
11 12
|
unex |
⊢ ( 𝐸 ∪ 𝐹 ) ∈ V |
| 14 |
10 13
|
pm3.2i |
⊢ ( 𝑉 ∈ V ∧ ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 15 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ ( 𝐸 ∪ 𝐹 ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = 𝑉 ) |
| 16 |
14 15
|
mp1i |
⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = 𝑉 ) |
| 17 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ V ∧ ( 𝐸 ∪ 𝐹 ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = ( 𝐸 ∪ 𝐹 ) ) |
| 18 |
14 17
|
mp1i |
⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = ( 𝐸 ∪ 𝐹 ) ) |
| 19 |
1 2 3 4 5 6 7 9 16 18
|
upgrun |
⊢ ( 𝜑 → 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ UPGraph ) |