| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ausgr.1 | ⊢ 𝐺  =  { 〈 𝑣 ,  𝑒 〉  ∣  𝑒  ⊆  { 𝑥  ∈  𝒫  𝑣  ∣  ( ♯ ‘ 𝑥 )  =  2 } } | 
						
							| 2 |  | ausgrusgri.1 | ⊢ 𝑂  =  { 𝑓  ∣  𝑓 : dom  𝑓 –1-1→ ran  𝑓 } | 
						
							| 3 | 1 2 | ausgrusgri | ⊢ ( ( 𝐻  ∈  𝑊  ∧  ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 )  ∧  ( iEdg ‘ 𝐻 )  ∈  𝑂 )  →  𝐻  ∈  USGraph ) | 
						
							| 4 | 3 | 3exp | ⊢ ( 𝐻  ∈  𝑊  →  ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 )  →  ( ( iEdg ‘ 𝐻 )  ∈  𝑂  →  𝐻  ∈  USGraph ) ) ) | 
						
							| 5 | 4 | com23 | ⊢ ( 𝐻  ∈  𝑊  →  ( ( iEdg ‘ 𝐻 )  ∈  𝑂  →  ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 )  →  𝐻  ∈  USGraph ) ) ) | 
						
							| 6 | 5 | imp | ⊢ ( ( 𝐻  ∈  𝑊  ∧  ( iEdg ‘ 𝐻 )  ∈  𝑂 )  →  ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 )  →  𝐻  ∈  USGraph ) ) | 
						
							| 7 | 1 | usgrausgri | ⊢ ( 𝐻  ∈  USGraph  →  ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ) | 
						
							| 8 | 6 7 | impbid1 | ⊢ ( ( 𝐻  ∈  𝑊  ∧  ( iEdg ‘ 𝐻 )  ∈  𝑂 )  →  ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 )  ↔  𝐻  ∈  USGraph ) ) |