Metamath Proof Explorer


Theorem usgrausgrb

Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 2-Jan-2020) (Revised by AV, 15-Oct-2020)

Ref Expression
Hypotheses ausgr.1 G=ve|ex𝒫v|x=2
ausgrusgri.1 O=f|f:domf1-1ranf
Assertion usgrausgrb HWiEdgHOVtxHGEdgHHUSGraph

Proof

Step Hyp Ref Expression
1 ausgr.1 G=ve|ex𝒫v|x=2
2 ausgrusgri.1 O=f|f:domf1-1ranf
3 1 2 ausgrusgri HWVtxHGEdgHiEdgHOHUSGraph
4 3 3exp HWVtxHGEdgHiEdgHOHUSGraph
5 4 com23 HWiEdgHOVtxHGEdgHHUSGraph
6 5 imp HWiEdgHOVtxHGEdgHHUSGraph
7 1 usgrausgri HUSGraphVtxHGEdgH
8 6 7 impbid1 HWiEdgHOVtxHGEdgHHUSGraph